skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toward a systematic exploration of nano-bio interactions

Journal Article · · Toxicology and Applied Pharmacology
; ; ; ;  [1];  [2]; ;  [3];  [1]
  1. School of Chemistry and Chemical Engineering, Shandong University, Jinan (China)
  2. School of Environmental Science and Technology, Shandong University, Jinan (China)
  3. Department of Chemistry, Rutgers University, Camden, NJ (United States)

Many studies of nanomaterials make non-systematic alterations of nanoparticle physicochemical properties. Given the immense size of the property space for nanomaterials, such approaches are not very useful in elucidating fundamental relationships between inherent physicochemical properties of these materials and their interactions with, and effects on, biological systems. Data driven artificial intelligence methods such as machine learning algorithms have proven highly effective in generating models with good predictivity and some degree of interpretability. They can provide a viable method of reducing or eliminating animal testing. However, careful experimental design with the modelling of the results in mind is a proven and efficient way of exploring large materials spaces. This approach, coupled with high speed automated experimental synthesis and characterization technologies now appearing, is the fastest route to developing models that regulatory bodies may find useful. We advocate greatly increased focus on systematic modification of physicochemical properties of nanoparticles combined with comprehensive biological evaluation and computational analysis. This is essential to obtain better mechanistic understanding of nano-bio interactions, and to derive quantitatively predictive and robust models for the properties of nanomaterials that have useful domains of applicability. - Highlights: • Nanomaterials studies make non-systematic alterations to nanoparticle properties. • Vast nanomaterials property spaces require systematic studies of nano-bio interactions. • Experimental design and modelling are efficient ways of exploring materials spaces. • We advocate systematic modification and computational analysis to probe nano-bio interactions.

OSTI ID:
22690978
Journal Information:
Toxicology and Applied Pharmacology, Vol. 323; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English