Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing
Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.
- OSTI ID:
- 22689721
- Journal Information:
- Materials Characterization, Journal Name: Materials Characterization Vol. 125; ISSN 1044-5803; ISSN MACHEX
- Country of Publication:
- United States
- Language:
- English
Similar Records
Microstructure and Mechanical Properties of Friction Stir Process Derived Al-TiO{sub 2} Nanocomposite
Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization