skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of cold rolling on the microstructural evolution of new β-typed Ti–6Mo–6V–5Cr–3Sn–2.5Zr alloys

Journal Article · · Materials Characterization

A Ti–6Mo–6V–5Cr–3Sn–2.5Zr (wt.%) alloy was designed as a new metastable β-Ti alloy. The effect that cold rolling had on the microstructural evolution of the material was investigated via optical microscopy (OM), X-ray diffraction (XRD), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM) measurements. A single β phase formed in the alloy after solution treatment at 780 °C for 30 min followed by water quenching. The solution-treated alloy was cold rolled with thickness reductions of 10%, 30%, 50% and 70%, and the hardness values increased as the thickness of the specimen decreased. The textures of the cold rolled specimen were characterized according to the 〈110〉 partial parallel to the rolling direction as the rolling reduction increased. The crystallographic orientation showed principal α-fiber textures for (111)〈110〉 and (112)〈110〉. The cold deformation led to the appearance of martensite α″ phases, particularly stress-induced martensite (SIM) α″ phases. - Highlights: • Effect of cold rolling on new β-typed Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy was studied. • A single β phase was obtained after solution treatment at 780 °C for 30 min. • α-Fiber textures became dominated with the increase in cold rolling reduction. • A stress-induced α″ martensite was caused by cold rolling.

OSTI ID:
22689683
Journal Information:
Materials Characterization, Vol. 123; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English