skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Ag additions on the lengthening rate of Ω plates and formation of σ phase in Al-Cu-Mg alloys during thermal exposure

Journal Article · · Materials Characterization

Effect of Ag additions on the mechanical properties and microstructures of the peak-aged Al-Cu-Mg alloys during prolonged thermal exposure at 150 °C, was investigated by tensile testing, conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The results showed that after exposure for 500 h, > 85% of the peak strength remained. Microstructure observations indicated that increasing the Ag content from 0.14 to 0.57% promoted the precipitation of a fine and uniform Ω phase and suppressed the formation of the θ′ phase, leading to a notable improvement of the strength properties and thermal stability of the studied alloys. Quantitative TEM analysis showed that the coarsening of Ω phase was predominated by plate lengthening rather than thickening, while its lengthening rate was independent of various Ag additions during exposure at 150 °C. In addition, an increase of Ag also facilitated the formation of a cubic σ phase, which was further supported by STEM results. - Highlights: •Increasing Ag improved strength properties and thermal stability of the alloys. •After exposure for 500 h, > 85% of the peak strength remained. •The lengthening rate of Ω plates remained constant as Ag increased at 150 °C. •Increasing Ag content facilitated the formation of σ phase.

OSTI ID:
22689677
Journal Information:
Materials Characterization, Vol. 123; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English