Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Effect of surface nanostructuring on corrosion behavior of Ti–6Al–4V alloy

Journal Article · · Materials Characterization
Surface nanostructure was induced in Ti–6Al–4V alloy by ultrasonic shot peening (USSP) for different durations, from 15 s to 30 min, and the modified surface was characterized by optical, scanning, atomic force and transmission electron microscopy. Nano size grains were observed to form on surface of the USSPed samples and surface roughness was increased with duration of USSP. Polarization study was carried out in Ringer's solution to examine the effect of surface nanostructuring on corrosion resistance of this alloy. Electrochemical corrosion was carried out for all the USSPed specimens as well as the non-USSPed sample in Ringer's solution. Surface morphology of the corroded samples was examined by SEM. In general, corrosion resistance was improved by USSP up to the duration of 15 min and there was maximum improvement in the specimen USSPed for 1 min. However, corrosion resistance was drastically reduced due to USSP for long duration of 30 min. - Highlights: •Nanostructure was induced by USSP on alloy Ti–6Al–4V of about 28 nm. •Grain refinement was confirmed by XRD and TEM. •USSP is an effective technique for the improvement in corrosion resistance. •Nanostructured surface promotes formation of protective surface layer of TiO{sub 2}.
OSTI ID:
22689644
Journal Information:
Materials Characterization, Journal Name: Materials Characterization Vol. 121; ISSN 1044-5803; ISSN MACHEX
Country of Publication:
United States
Language:
English