skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlled synthesis of MnOOH multilayer nanowires as anode materials for lithium-ion batteries

Journal Article · · Materials Characterization
; ;  [1];  [2];  [1];  [1]
  1. Key Laboratory of Advanced Structural Materials, Ministry of Education, Department of Materials Science and Engineering, Changchun University of Technology, Changchun 130012 (China)
  2. Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China)

MnOOH multilayer nanowires have been successfully synthesized by a hydrothermal method. It is found that the uniform multilayer structure of nanowires ran through the entire nanowire, which is formed via a layer by layer. The electrochemical properties of MnOOH multilayer nanowires as an anode material for Li-ion batteries (LIB) were investigated, and excellent capacity retention, superior cycling performance, and high rate capability were achieved. Specifically, the reversible capacity of MnOOH multilayer nanowires is 521 mAh/g after 500 cycles at 0.1 C, with excellent electrochemical stability. The multilayer nanowire electrodes exhibit short electron path lengths, high internal dislocation densities and large surface to volume ratio, resulting in increased specific capacity, cycling stability and rate performance in the energy storage devices, which serves as an indication of their potential application in LIBs. - Highlights: •MnOOH multilayer nanowires were synthesized by a hydrothermal method. •The uniform multilayer structure of nanowires was formed via layer by layer. •The reversible capacity of product shows 521 mAh/g after 500 cycles at 0.1 C. •MnOOH multilayer nanowires showed higher property as anode material in LIB.

OSTI ID:
22689591
Journal Information:
Materials Characterization, Vol. 118; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English