Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

Journal Article · · Materials Characterization
 [1];  [2]
  1. Clemson University–International Center for Automotive Research (CU-ICAR), #347, 4 Research Drive, Greenville, SC 29607 (United States)
  2. School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

OSTI ID:
22689587
Journal Information:
Materials Characterization, Journal Name: Materials Characterization Vol. 118; ISSN 1044-5803; ISSN MACHEX
Country of Publication:
United States
Language:
English