Sci-Thur AM: YIS – 04: Stopping power-to-Cherenkov power ratios and beam quality specification for clinical Cherenkov emission dosimetry of electrons: beam-specific effects and experimental validation
- McGill University, Cedars Cancer Centre, University of Michigan (United States)
Purpose: To advance towards clinical Cherenkov emission (CE)-based dosimetry by investigating beam-specific effects on Monte Carlo-calculated electron-beam stopping power-to-CE power ratios (SCRs), addressing electron beam quality specification in terms of CE, and validating simulations with measurements. Methods: The EGSnrc user code SPRRZnrc, used to calculate Spencer-Attix stopping-power ratios, was modified to instead calculate SCRs. SCRs were calculated for 6- to 22-MeV clinical electron beams from Varian TrueBeam, Clinac 21EX, and Clinac 2100C/D accelerators. Experiments were performed with a 20-MeV electron beam from a Varian TrueBeam accelerator, using a diffraction grating spectrometer with optical fiber input and a cooled back-illuminated CCD. A fluorophore was dissolved in the water to remove CE signal anisotropy. Results: It was found that angular spread of the incident beam has little effect on the SCR (≤ 0.3% at d{sub max}), while both the electron spectrum and photon contamination increase the SCR at shallow depths and decrease it at large depths. A universal data fit of R{sub 50} in terms of C{sub 50} (50% CE depth) revealed a strong linear dependence (R{sup 2} > 0.9999). The SCR was fit with a Burns-type equation (R{sup 2} = 0.9974, NRMSD = 0.5%). Below-threshold incident radiation was found to have minimal effect on beam quality specification (< 0.1%). Experiments and simulations were in good agreement. Conclusions: Our findings confirm the feasibility of the proposed CE dosimetry method, contingent on computation of SCRs from additional accelerators and on further experimental validation. This work constitutes an important step towards clinical high-resolution out-of-beam CE dosimetry.
- OSTI ID:
- 22689294
- Journal Information:
- Medical Physics, Journal Name: Medical Physics Journal Issue: 8 Vol. 43; ISSN 0094-2405; ISSN MPHYA6
- Country of Publication:
- United States
- Language:
- English
Similar Records
SU-E-T-585: Commissioning of Electron Monte Carlo in Eclipse Treatment Planning System for TrueBeam
SU-E-T-386: A Monte Carlo Dose Calculation Framework for Electron Beams On Varian TrueBeam