skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: A simulation study on the effect of sampling schedule and noise

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4961012· OSTI ID:22689285
 [1]; ;  [2];  [3];  [4]
  1. Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167, Germany and Department of Radiation Oncology, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167 (Germany)
  2. Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167 (Germany)
  3. Department of Nuclear Medicine, Ulm University, Ulm 89081 (Germany)
  4. Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen 52074, Germany and Department of Nuclear Medicine, Maastricht University Medical Center MUMC+, Maastricht 6229 (Netherlands)

Purpose: The aim of this study was to investigate the accuracy of PET-based treatment planning for predicting the time-integrated activity coefficients (TIACs). Methods: The parameters of a physiologically based pharmacokinetic (PBPK) model were fitted to the biokinetic data of 15 patients to derive assumed true parameters and were used to construct true mathematical patient phantoms (MPPs). Biokinetics of 150 MBq {sup 68}Ga-DOTATATE-PET was simulated with different noise levels [fractional standard deviation (FSD) 10%, 1%, 0.1%, and 0.01%], and seven combinations of measurements at 30 min, 1 h, and 4 h p.i. PBPK model parameters were fitted to the simulated noisy PET data using population-based Bayesian parameters to construct predicted MPPs. Therapy simulations were performed as 30 min infusion of {sup 90}Y-DOTATATE of 3.3 GBq in both true and predicted MPPs. Prediction accuracy was then calculated as relative variability v{sub organ} between TIACs from both MPPs. Results: Large variability values of one time-point protocols [e.g., FSD = 1%, 240 min p.i., v{sub kidneys} = (9 ± 6)%, and v{sub tumor} = (27 ± 26)%] show inaccurate prediction. Accurate TIAC prediction of the kidneys was obtained for the case of two measurements (1 and 4 h p.i.), e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 10)%, or three measurements, e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 9)%. Conclusions: {sup 68}Ga-DOTATATE-PET measurements could possibly be used to predict the TIACs of {sup 90}Y-DOTATATE when using a PBPK model and population-based Bayesian parameters. The two time-point measurement at 1 and 4 h p.i. with a noise up to FSD = 1% allows an accurate prediction of the TIACs in kidneys.

OSTI ID:
22689285
Journal Information:
Medical Physics, Vol. 43, Issue 9; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English