skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental models of hepatotoxicity related to acute liver failure

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [1];  [2]
  1. Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels (Belgium)
  2. Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City (United States)

Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. - Highlights: • The murine APAP model is very close to what is observed in patients. • The Gal/ET model is useful to study TNFα-mediated apoptotic signaling mechanisms. • Fas receptor activation is an effective model of apoptosis and secondary necrosis. • The ConA model is a relevant model of auto-immune hepatitis and viral hepatitis. • Multiple time point evaluation needed in experimental models of acute liver injury.

OSTI ID:
22687871
Journal Information:
Toxicology and Applied Pharmacology, Vol. 290; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English