skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Finding Horndeski theories with Einstein gravity limits

Journal Article · · Journal of Cosmology and Astroparticle Physics
; ;  [1]
  1. Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new and surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.

OSTI ID:
22679416
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2016, Issue 11; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English

Similar Records

Gravity at the horizon: on relativistic effects, CMB-LSS correlations and ultra-large scales in Horndeski's theory
Journal Article · Fri Jul 01 00:00:00 EDT 2016 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22679416

hi-class: Horndeski in the Cosmic Linear Anisotropy Solving System
Journal Article · Tue Aug 01 00:00:00 EDT 2017 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22679416

Halo modelling in chameleon theories
Journal Article · Sat Mar 01 00:00:00 EST 2014 · Journal of Cosmology and Astroparticle Physics · OSTI ID:22679416