skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4959228· OSTI ID:22679045
;  [1]
  1. Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

In this paper, we propose a pruned, nondirect product multi-configuration time dependent Hartree (MCTDH) method for solving the Schrödinger equation. MCTDH uses optimized 1D basis functions, called single particle functions, but the size of the standard direct product MCTDH basis scales exponentially with D, the number of coordinates. We compare the pruned approach to standard MCTDH calculations for basis sizes small enough that the latter are possible and demonstrate that pruning the basis reduces the CPU cost of computing vibrational energy levels of acetonitrile (D = 12) by more than two orders of magnitude. Using the pruned method, it is possible to do calculations with larger bases, for which the cost of standard MCTDH calculations is prohibitive. Pruning the basis complicates the evaluation of matrix-vector products. In this paper, they are done term by term for a sum-of-products Hamiltonian. When no attempt is made to exploit the fact that matrices representing some of the factors of a term are identity matrices, one needs only to carefully constrain indices. In this paper, we develop new ideas that make it possible to further reduce the CPU time by exploiting identity matrices.

OSTI ID:
22679045
Journal Information:
Journal of Chemical Physics, Vol. 145, Issue 4; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English