skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlation consistent basis sets for lanthanides: The atoms La–Lu

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4959280· OSTI ID:22679022

Using the 3rd-order Douglas-Kroll-Hess (DKH3) Hamiltonian, all-electron correlation consistent basis sets of double-, triple-, and quadruple-zeta quality have been developed for the lanthanide elements La through Lu. Basis sets designed for the recovery of valence correlation (defined here as 4f5s5p5d6s), cc-pVnZ-DK3, and outer-core correlation (valence + 4s4p4d), cc-pwCVnZ-DK3, are reported (n = D, T, and Q). Systematic convergence of both Hartree-Fock and correlation energies towards their respective complete basis set (CBS) limits are observed. Benchmark calculations of the first three ionization potentials (IPs) of La through Lu are reported at the DKH3 coupled cluster singles and doubles with perturbative triples, CCSD(T), level of theory, including effects of correlation down through the 4s electrons. Spin-orbit coupling is treated at the 2-component HF level. After extrapolation to the CBS limit, the average errors with respect to experiment were just 0.52, 1.14, and 4.24 kcal/mol for the 1st, 2nd, and 3rd IPs, respectively, compared to the average experimental uncertainties of 0.03, 1.78, and 2.65 kcal/mol, respectively. The new basis sets are also used in CCSD(T) benchmark calculations of the equilibrium geometries, atomization energies, and heats of formation for Gd{sub 2}, GdF, and GdF{sub 3}. Except for the equilibrium geometry and harmonic frequency of GdF, which are accurately known from experiment, all other calculated quantities represent significant improvements compared to the existing experimental quantities. With estimated uncertainties of about ±3 kcal/mol, the 0 K atomization energies (298 K heats of formation) are calculated to be (all in kcal/mol): 33.2 (160.1) for Gd{sub 2}, 151.7 (−36.6) for GdF, and 447.1 (−295.2) for GdF{sub 3}.

OSTI ID:
22679022
Journal Information:
Journal of Chemical Physics, Vol. 145, Issue 5; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English

Similar Records

Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr
Journal Article · Wed Aug 30 00:00:00 EDT 2017 · Journal of Chemical Physics · OSTI ID:22679022

Benchmark Theoretical Study of the π–π Binding Energy in the Benzene Dimer
Journal Article · Thu Sep 04 00:00:00 EDT 2014 · Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory · OSTI ID:22679022

Correlation consistent basis sets for actinides. I. The Th and U atoms
Journal Article · Sat Feb 21 00:00:00 EST 2015 · Journal of Chemical Physics · OSTI ID:22679022