Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Theoretical modeling and experimental observations of the atomic layer deposition of SrO using a cyclopentadienyl Sr precursor

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4960509· OSTI ID:22678989
; ; ;  [1]
  1. Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)
First-principle calculations are used to model the adsorption and hydration of strontium bis(cyclopentadienyl) [Sr(Cp){sub 2}] on TiO{sub 2}-terminated strontium titanate, SrTiO{sub 3} (STO), for the deposition of strontium oxide, SrO, by atomic layer deposition (ALD). The Sr(Cp){sub 2} precursor is shown to adsorb on the TiO{sub 2}-terminated surface, with the Sr atom assuming essentially the bulk position in STO. The C–Sr bonds are weaker than in the free molecule, with a Ti atom at the surface bonding to one of the C atoms in the cyclopentadienyl rings. The surface does not need to be hydrogenated for precursor adsorption. The calculations are compared with experimental observations for a related Sr cyclopentadienyl precursor, strontium bis(triisopropylcyclopentadienyl) [Sr({sup i}Pr{sub 3}Cp){sub 2}], adsorbed on TiO{sub 2}-terminated STO. High-resolution x-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy show adsorption of the Sr precursor on the TiO{sub 2}-terminated STO after a single precursor dose. This study suggests that ALD growth from the strontium precursors featuring cyclopentadienyl ligands, such as Sr(Cp){sub 2}, may initiate film growth on non-hydroxylated surfaces.
OSTI ID:
22678989
Journal Information:
Journal of Chemical Physics, Journal Name: Journal of Chemical Physics Journal Issue: 6 Vol. 145; ISSN JCPSA6; ISSN 0021-9606
Country of Publication:
United States
Language:
English