skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoinduced diffusion molecular transport

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4960622· OSTI ID:22678945
 [1];  [2]
  1. Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanskaya St. 5, Kiev 02094 (Ukraine)
  2. Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsuen Road, Hsinchu 300, Taiwan (China)

We consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventional dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity).

OSTI ID:
22678945
Journal Information:
Journal of Chemical Physics, Vol. 145, Issue 6; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English