skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theory of cosmological perturbations with cuscuton

Abstract

This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.

Authors:
; ;  [1]
  1. Department of Applied Mathematics, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1 (Canada)
Publication Date:
OSTI Identifier:
22676102
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 07; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COSMOLOGICAL MODELS; DISTURBANCES; GRAVITATION; INSTABILITY; METRICS; MODIFICATIONS; PERTURBATION THEORY; SCALAR FIELDS

Citation Formats

Boruah, Supranta S., Kim, Hyung J., and Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca. Theory of cosmological perturbations with cuscuton. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/07/022.
Boruah, Supranta S., Kim, Hyung J., & Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca. Theory of cosmological perturbations with cuscuton. United States. doi:10.1088/1475-7516/2017/07/022.
Boruah, Supranta S., Kim, Hyung J., and Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca. Sat . "Theory of cosmological perturbations with cuscuton". United States. doi:10.1088/1475-7516/2017/07/022.
@article{osti_22676102,
title = {Theory of cosmological perturbations with cuscuton},
author = {Boruah, Supranta S. and Kim, Hyung J. and Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca},
abstractNote = {This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.},
doi = {10.1088/1475-7516/2017/07/022},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 07,
volume = 2017,
place = {United States},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}
  • An analysis is presented of gravitational perturbations in an isotropic expanding universe that consists of relativistic gravitating particles. All short-wavelength perturbations in the ultrarelativistic gas comprising the universe will be propagated at the speed of light. A condition is established such that long-wavelength scalar and vector perturbations can grow.
  • A closed set of equations for the evolution of linear perturbations of homogeneous, isotropic cosmological models can be obtained in various ways. The simplest approach is to assume a macroscopic equation of state, e.g., that of a perfect fluid. For a more refined description of the early Universe, a microscopic treatment is required. The purpose of this paper is to compare the approach based on classical kinetic theory to the more recent thermal-field-theory approach. It is shown that in the high-temperature limit the latter describes cosmological perturbations supported by collisionless, massless matter, wherein it is equivalent to the kinetic theorymore » approach. The dependence of the perturbations in a system of a collisionless gas and a perfect fluid on the initial data is discussed in some detail. All singular and regular solutions are found analytically.« less
  • To show that the general framework of the second-order gauge-invariant perturbation theory developed by K. Nakamura [Prog. Theor. Phys. 110, 723 (2003); Prog. Theor. Phys. 113, 481 (2005)] is applicable to a wide class of cosmological situations, some formulas for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four-dimensional homogeneous isotropic universe, which is developed in Prog. Theor. Phys. 117, 17 (2007). We derive the formulas for the perturbations of the energy-momentum tensors and equations of motion for a perfect fluid, an imperfect fluid, and a single scalarmore » field, and show that all equations are derived in terms of gauge-invariant variables without any gauge fixing. Through these formulas, we may say that the decomposition formulas for the perturbations of any tensor field into gauge-invariant and gauge-variant parts, which are proposed in the above papers, are universal.« less
  • We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correctmore » form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.« less