skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE PHYSICAL MECHANISM BEHIND M DWARF METALLICITY INDICATORS AND THE ROLE OF C AND O ABUNDANCES

Journal Article · · Astrophysical Journal
;  [1];  [2];  [3]
  1. Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)
  2. Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States)
  3. Centre de Recherche Astrophysique de Lyon, UMR 5574, Université de Lyon, ENS de Lyon, Université Lyon 1, CNRS, F-69007, Lyon (France)

We present near-infrared (NIR) synthetic spectra based on PHOENIX stellar atmosphere models of typical early and mid-M dwarfs with varied C and O abundances. We apply multiple recently published methods for determining M dwarf metallicity to our models to determine the effects of C and O abundances on metallicity indicators. We find that the pseudo-continuum level is very sensitive to C/O and that all metallicity indicators show a dependence on C and O abundances, especially in lower T {sub eff} models. In some cases, the inferred metallicity ranges over a full order of magnitude (>1 dex) when [C/Fe] and [O/Fe] are varied independently by ±0.2. We also find that [(O−C)/Fe], the difference in O and C abundances, is a better tracer of the pseudo-continuum level than C/O. Models of mid-M dwarfs with [C/Fe], [O/Fe], and [M/H] that are realistic in the context of galactic chemical evolution suggest that variation in [(O−C)/Fe] is the primary physical mechanism behind the M dwarf metallicity tracers investigated here. Empirically calibrated metallicity indicators are still valid for most nearby M dwarfs due to the tight correlation between [(O−C)/Fe] and [Fe/H] evident in spectroscopic surveys of solar neighborhood FGK stars. Variations in C and O abundances also affect the spectral energy distribution of M dwarfs. Allowing [O/Fe] to be a free parameter provides better agreement between the synthetic spectra and observed spectra of metal-rich M dwarfs. We suggest that flux-calibrated, low-resolution, NIR spectra can provide a path toward measuring C and O abundances in M dwarfs and breaking the degeneracy between C/O and [Fe/H] present in M dwarf metallicity indicators.

OSTI ID:
22667718
Journal Information:
Astrophysical Journal, Vol. 828, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English