skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE QUENCHING TIMESCALE AND QUENCHING RATE OF GALAXIES

Journal Article · · Astrophysical Journal
;  [1]; ;  [2]
  1. CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China)
  2. Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)

The average star formation rate (SFR) in galaxies has been declining since the redshift of 2. A fraction of galaxies quench and become quiescent. We constrain two key properties of the quenching process: the quenching timescale and the quenching rate among galaxies. We achieve this by analyzing the galaxy number density profile in NUV- u color space and the distribution in NUV- u versus u - i color–color diagram with a simple toy-model framework. We focus on galaxies in three mass bins between 10{sup 10} and 10{sup 10.6} M {sub ⊙}. In the NUV- u versus u - i color–color diagram, the red u - i galaxies exhibit a different slope from the slope traced by the star-forming galaxies. This angled distribution and the number density profile of galaxies in NUV- u space strongly suggest that the decline of the SFR in galaxies has to accelerate before they turn quiescent. We model this color–color distribution with a two-phase exponential decline star formation history. The models with an e-folding time in the second phase (the quenching phase) of 0.5 Gyr best fit the data. We further use the NUV- u number density profile to constrain the quenching rate among star-forming galaxies as a function of mass. Adopting an e-folding time of 0.5 Gyr in the second phase (or the quenching phase), we found the quenching rate to be 19%/Gyr, 25%/Gyr and 33%/Gyr for the three mass bins. These are upper limits of the quenching rate as the transition zone could also be populated by rejuvenated red-sequence galaxies.

OSTI ID:
22667193
Journal Information:
Astrophysical Journal, Vol. 832, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English