skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: STAR CLUSTER FORMATION AND DESTRUCTION IN THE MERGING GALAXY NGC 3256

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Physics and Astronomy Department, University of Toledo, Toledo, OH 43606-3390 (United States)
  2. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (Σ{sub SFR}). These clusters have luminosity and mass functions that follow power laws, dN / dL ∝ L{sup α} with α = 2.23 ± 0.07, and dN / dM ∝ M{sup β} with β = 1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN / dτ ∝ τ{sup γ}, with γ ≈ 0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ∼80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high Σ{sub SFR} form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with Σ{sub SFR} and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.

OSTI ID:
22666062
Journal Information:
Astrophysical Journal, Vol. 826, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English