skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stability of Sulphur Dimers (S{sub 2}) in Cometary Ices

Journal Article · · Astrophysical Journal
;  [1]; ; ; ;  [2];  [3]
  1. Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France)
  2. Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7616, F-75252 Paris CEDEX 05 (France)
  3. Department of Astronomy and Carl Sagan Institute, Space Sciences Building Cornell University, Ithaca, NY 14853 (United States)

S{sub 2} has been observed for decades in comets, including comet 67P/Churyumov–Gerasimenko. Despite the fact that this molecule appears ubiquitous in these bodies, the nature of its source remains unknown. In this study, we assume that S{sub 2} is formed by irradiation (photolysis and/or radiolysis) of S-bearing molecules embedded in the icy grain precursors of comets and that the cosmic ray flux simultaneously creates voids in ices within which the produced molecules can accumulate. We investigate the stability of S{sub 2} molecules in such cavities, assuming that the surrounding ice is made of H{sub 2}S or H{sub 2}O. We show that the stabilization energy of S{sub 2} molecules in such voids is close to that of the H{sub 2}O ice binding energy, implying that they can only leave the icy matrix when this latter sublimates. Because S{sub 2} has a short lifetime in the vapor phase, we derive that its formation in grains via irradiation must occur only in low-density environments such as the ISM or the upper layers of the protosolar nebula, where the local temperature is extremely low. In the first case, comets would have agglomerated from icy grains that remained pristine when entering the nebula. In the second case, comets would have agglomerated from icy grains condensed in the protosolar nebula and that would have been efficiently irradiated during their turbulent transport toward the upper layers of the disk. Both scenarios are found consistent with the presence of molecular oxygen in comets.

OSTI ID:
22663945
Journal Information:
Astrophysical Journal, Vol. 835, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English