skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multiple Populations in NGC 1851: Abundance Variations and UV Photometric Synthesis in the Washington and HST /WFC3 Systems

Abstract

The analysis of multiple populations (MPs) in globular clusters (GCs), both spectroscopically and photometrically, is key in understanding their formation and evolution. The relatively narrow Johnson U, F336W, and Stromgren and Sloan u filters have been crucial in exhibiting these MPs photometrically, but in Paper I we showed that the broader Washington C filter can more efficiently detect MPs in the test case GC NGC 1851. Additionally, In Paper I we detected a double main sequence (MS) that has not been detected in previous observations of NGC 1851. We now match this photometry to NGC 1851's published RGB abundances and find that the two RGB branches observed in C generally exhibit different abundance characteristics in a variety of elements (e.g., Ba, Na, and O) and in CN band strengths, but no single element can define the two RGB branches. However, simultaneously considering [Ba/Fe] or CN strength with either [Na/Fe], [O/Fe], or CN strength can separate the two photometric RGB branches into two distinct abundance groups. Matches of NGC 1851's published SGB and HB abundances to the Washington photometry shows consistent characterizations of the MPs, which can be defined as an O-rich/N-normal population and an O-poor/N-rich population. Photometric synthesis for bothmore » the Washington C filter and the F336W filter finds that these abundance characteristics, with appropriate variations in He, can reproduce for both filters the photometric observations in both the RGB and the MS. This photometric synthesis also confirms the throughput advantages that the C filter has in detecting MPs.« less

Authors:
 [1]; ;  [2]
  1. Center for Astrophysical Sciences, Johns Hopkins University, Baltimore, MD 21218 (United States)
  2. Departamento de Astronomía, Casilla 160, Universidad de Concepción (Chile)
Publication Date:
OSTI Identifier:
22663717
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (Online); Journal Volume: 153; Journal Issue: 4; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABUNDANCE; BARIUM; ELEMENT ABUNDANCE; GIANT STARS; IRON; MAIN SEQUENCE STARS; OXYGEN; PHOTOMETRY; SODIUM; STAR CLUSTERS; SYNTHESIS; VARIATIONS

Citation Formats

Cummings, Jeffrey D., Geisler, D., and Villanova, S. Multiple Populations in NGC 1851: Abundance Variations and UV Photometric Synthesis in the Washington and HST /WFC3 Systems. United States: N. p., 2017. Web. doi:10.3847/1538-3881/AA63E5.
Cummings, Jeffrey D., Geisler, D., & Villanova, S. Multiple Populations in NGC 1851: Abundance Variations and UV Photometric Synthesis in the Washington and HST /WFC3 Systems. United States. doi:10.3847/1538-3881/AA63E5.
Cummings, Jeffrey D., Geisler, D., and Villanova, S. Sat . "Multiple Populations in NGC 1851: Abundance Variations and UV Photometric Synthesis in the Washington and HST /WFC3 Systems". United States. doi:10.3847/1538-3881/AA63E5.
@article{osti_22663717,
title = {Multiple Populations in NGC 1851: Abundance Variations and UV Photometric Synthesis in the Washington and HST /WFC3 Systems},
author = {Cummings, Jeffrey D. and Geisler, D. and Villanova, S.},
abstractNote = {The analysis of multiple populations (MPs) in globular clusters (GCs), both spectroscopically and photometrically, is key in understanding their formation and evolution. The relatively narrow Johnson U, F336W, and Stromgren and Sloan u filters have been crucial in exhibiting these MPs photometrically, but in Paper I we showed that the broader Washington C filter can more efficiently detect MPs in the test case GC NGC 1851. Additionally, In Paper I we detected a double main sequence (MS) that has not been detected in previous observations of NGC 1851. We now match this photometry to NGC 1851's published RGB abundances and find that the two RGB branches observed in C generally exhibit different abundance characteristics in a variety of elements (e.g., Ba, Na, and O) and in CN band strengths, but no single element can define the two RGB branches. However, simultaneously considering [Ba/Fe] or CN strength with either [Na/Fe], [O/Fe], or CN strength can separate the two photometric RGB branches into two distinct abundance groups. Matches of NGC 1851's published SGB and HB abundances to the Washington photometry shows consistent characterizations of the MPs, which can be defined as an O-rich/N-normal population and an O-poor/N-rich population. Photometric synthesis for both the Washington C filter and the F336W filter finds that these abundance characteristics, with appropriate variations in He, can reproduce for both filters the photometric observations in both the RGB and the MS. This photometric synthesis also confirms the throughput advantages that the C filter has in detecting MPs.},
doi = {10.3847/1538-3881/AA63E5},
journal = {Astronomical Journal (Online)},
number = 4,
volume = 153,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}
}
  • The analysis of multiple populations (MPs) in globular clusters (GCs) has become a forefront area of research in astronomy. Multiple red giant branches (RGBs), subgiant branches (SGBs), and even main sequences (MSs) have now been observed photometrically in many GCs, while broad abundance distributions of certain elements have been detected spectroscopically in most, if not all, GCs. UV photometry has been crucial in discovering and analyzing these MPs, but the Johnson U and the Stromgren and Sloan u filters that have generally been used are relatively inefficient and very sensitive to reddening and atmospheric extinction. In contrast, the Washington Cmore » filter is much broader and redder than these competing UV filters, making it far more efficient at detecting MPs and much less sensitive to reddening and extinction. Here, we investigate the use of the Washington system to uncover MPs using only a 1 m telescope. Our analysis of the well-studied GC NGC 1851 finds that the C filter is both very efficient and effective at detecting its previously discovered MPs in the RGB and SGB. Remarkably, we have also detected an intrinsically broad MS best characterized by two distinct but heavily overlapping populations that cannot be explained by binaries, field stars, or photometric errors. The MS distribution is in very good agreement with that seen on the RGB, with ∼30% of the stars belonging to the second population. There is also evidence for two sequences in the red horizontal branch, but this appears to be unrelated to the MPs in this cluster. Neither of these latter phenomena have been observed previously in this cluster. The redder MS stars are also more centrally concentrated than the blue MS. This is the first time MPs in an MS have been discovered from the ground, and using only a 1 m telescope. The Washington system thus proves to be a very powerful tool for investigating MPs, and holds particular promise for extragalactic objects where photons are limited.« less
  • Multi-band Hubble Space Telescope photometry reveals that the main sequence, sub-giant, and the red-giant branch of the globular cluster NGC 6752 splits into three main components in close analogy with the three distinct segments along its horizontal branch stars. These triple sequences are consistent with three stellar groups: a stellar population with a chemical composition similar to field-halo stars (Population a), a Population (c) with enhanced sodium and nitrogen, depleted carbon and oxygen, and an enhanced helium abundance ({Delta}Y {approx} 0.03), and a Population (b) with an intermediate (between Populations a and c) chemical composition and slightly enhanced helium ({Delta}Ymore » {approx} 0.01). These components contain {approx}25% (Population a), {approx}45% (Population b), and {approx}30% (Population c) of the stars. No radial gradient for the relative numbers of the three populations has been identified out to about 2.5 half-mass radii.« less
  • The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands,more » and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)« less
  • We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the globular cluster NGC 1851 distributed along the two RGBs of the (v, v-y) color-magnitude diagram. We determined abundances for C+N+O, Na, {alpha}, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N, O, Na) and s-element content. On the other hand, they do not show any significant difference in their {alpha} and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not supportmore » previous hypotheses suggesting that the origins of the two RGBs and the two subgiant branches of the cluster are related to different content of either {alpha} (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by Type II supernovae.« less
  • There is increasing evidence that some massive globular clusters (GCs) host multiple stellar populations having different heavy element abundances enriched by supernovae. They usually accompany multiple red giant branches (RGBs) in the color-magnitude diagrams (CMDs), and are distinguished from most of the other GCs which display variations only in light element abundances. In order to investigate the star formation histories of these peculiar GCs, we have constructed synthetic CMDs for {omega} Cen, M22, and NGC 1851. Our models are based on the updated versions of Yonsei-Yale (Y{sup 2}) isochrones and horizontal branch (HB) evolutionary tracks which include the cases ofmore » enhancements in both helium and the total CNO abundances. To estimate ages and helium abundances of subpopulations in each GC, we have compared our models with the observations on the Hess diagram by employing a {chi}{sup 2} minimization technique. We find that metal-rich subpopulations in each of these GCs are also enhanced in helium abundance, and the age differences between the metal-rich and metal-poor subpopulations are fairly small ({approx}0.3-1.7 Gyr), even in the models with the observed variations in the total CNO content. These are required to simultaneously reproduce the observed extended HB and the splits on the main sequence, subgiant branch, and RGB. Our results are consistent with the hypothesis that these GCs are the relics of more massive primeval dwarf galaxies that merged and disrupted to form the proto-Galaxy.« less