skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

Journal Article · · Astrophysical Journal
; ;  [1]; ;  [2];  [3]
  1. Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
  2. Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)
  3. Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan)

We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

OSTI ID:
22663701
Journal Information:
Astrophysical Journal, Vol. 839, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English