skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging

Journal Article · · Astrophysical Journal
; ;  [1];  [2]
  1. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)
  2. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT (Australia)

In the era of large stellar spectroscopic surveys, there is an emphasis on deriving not only stellar abundances but also the ages for millions of stars. In the context of Galactic archeology, stellar ages provide a direct probe of the formation history of the Galaxy. We use the stellar evolution code MESA to compute models with atomic diffusion—with and without radiative acceleration—and extra mixing in the surface layers. The extra mixing consists of both density-dependent turbulent mixing and envelope overshoot mixing. Based on these models we argue that it is important to distinguish between initial, bulk abundances (parameters) and current, surface abundances (variables) in the analysis of individual stellar ages. In stars that maintain radiative regions on evolutionary timescales, atomic diffusion modifies the surface abundances. We show that when initial, bulk metallicity is equated with current, surface metallicity in isochrone age analysis, the resulting stellar ages can be systematically overestimated by up to 20%. The change of surface abundances with evolutionary phase also complicates chemical tagging, which is the concept that dispersed star clusters can be identified through unique, high-dimensional chemical signatures. Stars from the same cluster, but in different evolutionary phases, will show different surface abundances. We speculate that calibration of stellar models may allow us to estimate not only stellar ages but also initial abundances for individual stars. In the meantime, analyzing the chemical properties of stars in similar evolutionary phases is essential to minimize the effects of atomic diffusion in the context of chemical tagging.

OSTI ID:
22663612
Journal Information:
Astrophysical Journal, Vol. 840, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

COMPARISON OF CONVECTIVE OVERSHOOTING MODELS AND THEIR IMPACT ON ABUNDANCES FROM INTEGRATED LIGHT SPECTROSCOPY OF YOUNG (<3 Gyr) STAR CLUSTERS
Journal Article · Fri Apr 20 00:00:00 EDT 2012 · Astrophysical Journal · OSTI ID:22663612

SPECTROSCOPIC ABUNDANCES AND MEMBERSHIP IN THE WOLF 630 MOVING GROUP
Journal Article · Sun Aug 15 00:00:00 EDT 2010 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:22663612

Strong chemical tagging with APOGEE: 21 candidate star clusters that have dissolved across the Milky Way disc
Journal Article · Mon Jul 06 00:00:00 EDT 2020 · Monthly Notices of the Royal Astronomical Society · OSTI ID:22663612