skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-Ray Intraday Variability of Five TeV Blazars with NuSTAR

Abstract

We have examined 40 Nuclear Spectroscopic Telescope Array ( NuSTAR ) light curves (LCs) of five TeV emitting high synchrotron peaked blazars: 1ES 0229+200, Mrk 421, Mrk 501, 1ES 1959+650, and PKS 2155−304. Four of the blazars showed intraday variability in the NuSTAR energy range of 3–79 keV. Using an autocorrelation function analysis we searched for intraday variability timescales in these LCs and found indications of several between 2.5 and 32.8 ks in eight LCs of Mrk 421, a timescale around 8.0 ks for one LC of Mrk 501, and timescales of 29.6 and 57.4 ks in two LCs of PKS 2155-304. The other two blazars’ LCs do not show any evidence for intraday variability timescales shorter than the lengths of those observations; however, the data were both sparser and noisier for them. We found positive correlations with zero lag between soft (3–10 keV) and hard (10–79 keV) bands for most of the LCs, indicating that their emissions originate from the same electron population. We examined spectral variability using a hardness ratio analysis and noticed a general “harder-when-brighter” behavior. The 22 LCs of Mrk 421 observed between 2012 July and 2013 April show that this source was in a quiescentmore » state for an extended period of time and then underwent an unprecedented double-peaked outburst while monitored on a daily basis during 2013 April 10–16. We briefly discuss models capable of explaining these blazar emissions.« less

Authors:
;  [1];  [2]
  1. Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263002 (India)
  2. Department of Physics, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628-0718 (United States)
Publication Date:
OSTI Identifier:
22663541
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 841; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BL LACERTAE OBJECTS; CORRELATIONS; ELECTRONS; EMISSION; HARDNESS; SYNCHROTRONS; TELESCOPES; TEV RANGE; VISIBLE RADIATION; X RADIATION

Citation Formats

Pandey, Ashwani, Gupta, Alok C., and Wiita, Paul J., E-mail: ashwanitapan@gmail.com, E-mail: acgupta30@gmail.com, E-mail: wiitap@tcnj.edu. X-Ray Intraday Variability of Five TeV Blazars with NuSTAR. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA705E.
Pandey, Ashwani, Gupta, Alok C., & Wiita, Paul J., E-mail: ashwanitapan@gmail.com, E-mail: acgupta30@gmail.com, E-mail: wiitap@tcnj.edu. X-Ray Intraday Variability of Five TeV Blazars with NuSTAR. United States. doi:10.3847/1538-4357/AA705E.
Pandey, Ashwani, Gupta, Alok C., and Wiita, Paul J., E-mail: ashwanitapan@gmail.com, E-mail: acgupta30@gmail.com, E-mail: wiitap@tcnj.edu. Thu . "X-Ray Intraday Variability of Five TeV Blazars with NuSTAR". United States. doi:10.3847/1538-4357/AA705E.
@article{osti_22663541,
title = {X-Ray Intraday Variability of Five TeV Blazars with NuSTAR},
author = {Pandey, Ashwani and Gupta, Alok C. and Wiita, Paul J., E-mail: ashwanitapan@gmail.com, E-mail: acgupta30@gmail.com, E-mail: wiitap@tcnj.edu},
abstractNote = {We have examined 40 Nuclear Spectroscopic Telescope Array ( NuSTAR ) light curves (LCs) of five TeV emitting high synchrotron peaked blazars: 1ES 0229+200, Mrk 421, Mrk 501, 1ES 1959+650, and PKS 2155−304. Four of the blazars showed intraday variability in the NuSTAR energy range of 3–79 keV. Using an autocorrelation function analysis we searched for intraday variability timescales in these LCs and found indications of several between 2.5 and 32.8 ks in eight LCs of Mrk 421, a timescale around 8.0 ks for one LC of Mrk 501, and timescales of 29.6 and 57.4 ks in two LCs of PKS 2155-304. The other two blazars’ LCs do not show any evidence for intraday variability timescales shorter than the lengths of those observations; however, the data were both sparser and noisier for them. We found positive correlations with zero lag between soft (3–10 keV) and hard (10–79 keV) bands for most of the LCs, indicating that their emissions originate from the same electron population. We examined spectral variability using a hardness ratio analysis and noticed a general “harder-when-brighter” behavior. The 22 LCs of Mrk 421 observed between 2012 July and 2013 April show that this source was in a quiescent state for an extended period of time and then underwent an unprecedented double-peaked outburst while monitored on a daily basis during 2013 April 10–16. We briefly discuss models capable of explaining these blazar emissions.},
doi = {10.3847/1538-4357/AA705E},
journal = {Astrophysical Journal},
number = 2,
volume = 841,
place = {United States},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}
  • The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronicmore » interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.« less
  • III Zw 2 is the prototype of radio-intermediate quasars. Although there is the evidence of possessing strong jet, significant γ -ray emission has not been reported before. In this work, we carry out a detailed analysis of the latest Fermi -LAT Pass  8 data. No significant γ -ray signal has been detected in the time-averaged 7-year Fermi -LAT data of III Zw 2; however, we have identified two distinct γ -ray flares with isotropic luminosities of ∼10{sup 45} erg s{sup −1}. Multiwavelength data analysis (also including the optical photometric observations from Yunnan Observatories) are presented and the main finding ismore » simultaneous optical and γ -ray flares of III Zw 2 appearing in 2009 November. Violent γ -ray variability with a doubling timescale of 2.5 hr was detected in another γ -ray flare in May 2010, for which the 3-hr γ -ray peak flux is ∼250 times of the average flux in 7 years. Rather similar behaviors are observed in blazars and the blazar model can reasonably reproduce the spectral energy distribution of III Zw 2 in a wide energy range, strongly suggesting that its central engine resembles that of blazars. In view of its core, which shares radio similarities with young radio sources, together with weak extended radio lobe emission, we suggest that III Zw 2 harbors a recurrent activity core and thus serves as a valuable target for investigating the fueling and triggering of the activity in radio-loud active galactic nuclei.« less
  • Sagittarius A{sup *} harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A{sup *} spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time,more » we clearly see that the power-law spectrum of Sagittarius A{sup *} X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (∼55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse Compton models. One flare exhibits large and rapid (<100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within ∼10 Schwarzschild radii of the black hole.« less
  • We report on the detection of excess hard X-ray emission from the TeV BL Lac object Mrk 421 during the historical low-flux state of the source in 2013 January. Nuclear Spectroscopic Telescope Array observations were conducted four times between MJD 56294 and MJD 56312 with a total exposure of 80.9 ks. The source flux in the 3–40 keV range was nearly constant, except for MJD 56307 when the average flux level increased by a factor of three. Throughout the exposure, the X-ray spectra of Mrk 421 were well represented by a steep power-law model with a photon index of Γmore » ≃ 3.1, although a significant excess was noted above 20 keV in the MJD 56302 data when the source was in its faintest state. Moreover, Mrk 421 was detected at more than the 4 σ level in the 40–79 keV count maps for both MJD 56307 and MJD 56302 but not during the remaining two observations. The detected excess hard X-ray emission connects smoothly with the extrapolation of the high-energy γ -ray continuum of the blazar constrained by Fermi -LAT during source quiescence. These findings indicate that while the overall X-ray spectrum of Mrk 421 is dominated by the highest-energy tail of the synchrotron continuum, the variable excess hard X-ray emission above 20 keV (on the timescale of a week) is related to the inverse Compton emission component. We discuss the resulting constraints on the variability and spectral properties of the low-energy segment of the electron energy distribution in the source.« less
  • We present a data set derived from {approx}50 ksec continuous Suzaku observations and covered with quasi-simultaneous TeV-observations (HESS, MAGIC) of two of the more distant TeV-blazars detected to date: 1ES 1101-232 and 1ES 1553+113. Both sources are found in a non-variable state with combined XIS-PIN spectra indicating downward curvature up to several tens of keV. 1ES 101-232 was found in a quiet state with the lowest X-ray flux ever measured. We discuss the contemporaneous broadband spectral energy distribution (SED) of both sources and implications from absorption in the EBL for the redshift of 1ES 1553+113.