skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk

Journal Article · · Astrophysical Journal
; ; ;  [1];  [2];  [3]
  1. Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)
  2. Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States)
  3. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanol (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.

OSTI ID:
22663447
Journal Information:
Astrophysical Journal, Vol. 843, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English