skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope

Abstract

Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L -band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0–5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation ofmore » the two surveys, along with their descriptions and related discussions.« less

Authors:
; ;  [1]; ; ; ; ;  [2]; ; ;  [3];  [4]
  1. Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)
  2. Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States)
  3. Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506 (United States)
  4. Oxford e-Research Centre, University of Oxford, Keble Road, Oxford OX1 3QG (United Kingdom)
Publication Date:
OSTI Identifier:
22661351
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal, Supplement Series; Journal Volume: 228; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; DATA ANALYSIS; GHZ RANGE; PLUGGING; PULSARS; RADIOASTRONOMY; REDUCTION; STELLAR ACTIVITY; TELESCOPES; TRANSIENTS

Citation Formats

Chennamangalam, Jayanth, Karastergiou, Aris, Williams, Christopher, MacMahon, David, Cobb, Jeff, Siemion, Andrew P. V., Gajjar, Vishal, Werthimer, Dan, Rajwade, Kaustubh, Lorimer, Duncan R., McLaughlin, Maura A., and Armour, Wes, E-mail: jayanth@astro.ox.ac.uk. SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope. United States: N. p., 2017. Web. doi:10.3847/1538-4365/228/2/21.
Chennamangalam, Jayanth, Karastergiou, Aris, Williams, Christopher, MacMahon, David, Cobb, Jeff, Siemion, Andrew P. V., Gajjar, Vishal, Werthimer, Dan, Rajwade, Kaustubh, Lorimer, Duncan R., McLaughlin, Maura A., & Armour, Wes, E-mail: jayanth@astro.ox.ac.uk. SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope. United States. doi:10.3847/1538-4365/228/2/21.
Chennamangalam, Jayanth, Karastergiou, Aris, Williams, Christopher, MacMahon, David, Cobb, Jeff, Siemion, Andrew P. V., Gajjar, Vishal, Werthimer, Dan, Rajwade, Kaustubh, Lorimer, Duncan R., McLaughlin, Maura A., and Armour, Wes, E-mail: jayanth@astro.ox.ac.uk. Wed . "SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope". United States. doi:10.3847/1538-4365/228/2/21.
@article{osti_22661351,
title = {SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope},
author = {Chennamangalam, Jayanth and Karastergiou, Aris and Williams, Christopher and MacMahon, David and Cobb, Jeff and Siemion, Andrew P. V. and Gajjar, Vishal and Werthimer, Dan and Rajwade, Kaustubh and Lorimer, Duncan R. and McLaughlin, Maura A. and Armour, Wes, E-mail: jayanth@astro.ox.ac.uk},
abstractNote = {Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L -band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0–5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation of the two surveys, along with their descriptions and related discussions.},
doi = {10.3847/1538-4365/228/2/21},
journal = {Astrophysical Journal, Supplement Series},
number = 2,
volume = 228,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combinationmore » of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.« less
  • The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alterationmore » of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.« less
  • A Survey of Ionized Gas in the Galaxy, made with the Arecibo telescope (SIGGMA), uses the Arecibo L-band Feed Array (ALFA) to fully sample the Galactic plane (30 Degree-Sign {<=} l {<=} 75 Degree-Sign and -2 Degree-Sign {<=} b {<=} 2 Degree-Sign ; 175 Degree-Sign {<=} l {<=} 207 Degree-Sign and -2 Degree-Sign {<=} b {<=} 1 Degree-Sign ) observable with the telescope in radio recombination lines (RRLs). Processed data sets are being produced in the form of data cubes of 2 Degree-Sign (along l) Multiplication-Sign 4 Degree-Sign (along b) Multiplication-Sign 151 (number of channels), archived and made public. Themore » 151 channels cover a velocity range of 600 km s{sup -1} and the velocity resolution of the survey changes from 4.2 km s{sup -1} to 5.1 km s{sup -1} from the lowest frequency channel to the highest frequency channel. RRL maps with 3.'4 resolution and a line flux density sensitivity of {approx}0.5 mJy will enable us to identify new H II regions, measure their electron temperatures, study the physics of photodissociation regions with carbon RRLs, and investigate the origin of the extended low-density medium. Twelve Hn{alpha} lines fall within the 300 MHz bandpass of ALFA; they are resampled to a common velocity resolution to improve the signal-to-noise ratio (S/N) by a factor of three or more and preserve the line width. SIGGMA will produce the most sensitive fully sampled RRL survey to date. Here, we discuss the observing and data reduction techniques in detail. A test observation toward the H II region complex S255/S257 has detected Hn{alpha} and Cn{alpha} lines with S/N > 10.« less
  • We present Arecibo time-aligned, total intensity profiles for 46 pulsars over an unusually wide range of radio frequencies and multi-frequency, polarization-angle density diagrams, and/or polarization profiles for 57 pulsars at some or all of the frequencies 50, 111/130, 430, and 1400 MHz. The frequency-dependent dispersion delay has been removed in order to align the profiles for study of their spectral evolution, and wherever possible the profiles of each pulsar are displayed on the same longitude scale. Most of the pulsars within Arecibo's declination range that are sufficiently bright for such spectral or single pulse analysis are included in this survey.more » The calibrated single pulse sequences and average profiles are available by web download for further study.« less
  • We present results from multi-epoch neutral hydrogen (H I) absorption observations of six bright pulsars with the Arecibo telescope. Moving through the interstellar medium (ISM) with transverse velocities of 10-150 AU yr{sup -1}, these pulsars have swept across 1-200 AU over the course of our experiment, allowing us to probe the existence and properties of the tiny-scale atomic structure (TSAS) in the cold neutral medium (CNM). While most of the observed pulsars show no significant change in their H I absorption spectra, we have identified at least two clear TSAS-induced opacity variations in the direction of B1929+10. These observations requiremore » strong spatial inhomogeneities in either the TSAS clouds' physical properties themselves or else in the clouds' galactic distribution. While TSAS is occasionally detected on spatial scales down to 10 AU, it is too rare to be characterized by a spectrum of turbulent CNM fluctuations on scales of 10{sup 1}-10{sup 3} AU, as previously suggested by some work. In the direction of B1929+10, an apparent correlation between TSAS and interstellar clouds inside the warm Local Bubble (LB) indicates that TSAS may be tracing the fragmentation of the LB wall via hydrodynamic instabilities. While similar fragmentation events occur frequently throughout the ISM, the warm medium surrounding these cold cloudlets induces a natural selection effect wherein small TSAS clouds evaporate quickly and are rare, while large clouds survive longer and become a general property of the ISM.« less