skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accounting for Chromatic Atmospheric Effects on Barycentric Corrections

Abstract

Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s{sup −1} can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380–680 nm) are required to account for this effect at the 10 cm s{sup −1} level, with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).

Authors:
; ; ;  [1]
  1. Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511 (United States)
Publication Date:
OSTI Identifier:
22661339
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 837; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; ACCOUNTING; ACCURACY; COMPUTERIZED SIMULATION; CORRECTIONS; ERRORS; FREQUENCY DEPENDENCE; MASS; PHOTONS; POLYNOMIALS; RADIAL VELOCITY; SPECTRA; STARS; WAVELENGTHS

Citation Formats

Blackman, Ryan T., Szymkowiak, Andrew E., Fischer, Debra A., and Jurgenson, Colby A., E-mail: ryan.blackman@yale.edu. Accounting for Chromatic Atmospheric Effects on Barycentric Corrections. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA5EAD.
Blackman, Ryan T., Szymkowiak, Andrew E., Fischer, Debra A., & Jurgenson, Colby A., E-mail: ryan.blackman@yale.edu. Accounting for Chromatic Atmospheric Effects on Barycentric Corrections. United States. doi:10.3847/1538-4357/AA5EAD.
Blackman, Ryan T., Szymkowiak, Andrew E., Fischer, Debra A., and Jurgenson, Colby A., E-mail: ryan.blackman@yale.edu. Wed . "Accounting for Chromatic Atmospheric Effects on Barycentric Corrections". United States. doi:10.3847/1538-4357/AA5EAD.
@article{osti_22661339,
title = {Accounting for Chromatic Atmospheric Effects on Barycentric Corrections},
author = {Blackman, Ryan T. and Szymkowiak, Andrew E. and Fischer, Debra A. and Jurgenson, Colby A., E-mail: ryan.blackman@yale.edu},
abstractNote = {Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s{sup −1} can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380–680 nm) are required to account for this effect at the 10 cm s{sup −1} level, with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).},
doi = {10.3847/1538-4357/AA5EAD},
journal = {Astrophysical Journal},
number = 1,
volume = 837,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}
  • Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energymore » distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.« less
  • Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on howmore » chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker and fewer correcting magnet families are required, thus minimizing the impact on dynamic aperture.« less
  • We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that ismore » an order of magnitude greater than the pulse width. (interferometry)« less
  • Cited by 5