skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

Journal Article · · Astrophysical Journal
; ;  [1]
  1. Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

OSTI ID:
22661311
Journal Information:
Astrophysical Journal, Vol. 837, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English