skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: STOCHASTIC TRANSIENTS AS A SOURCE OF QUASI-PERIODIC PROCESSES IN THE SOLAR ATMOSPHERE

Journal Article · · Astrophysical Journal, Supplement Series
;  [1];  [2];  [3]
  1. Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom)
  2. Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China)
  3. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209 Shandong (China)

Solar dynamics and turbulence occur at all heights of the solar atmosphere and could be described as stochastic processes. We propose that finite-lifetime transients recurring at a certain place could trigger quasi-periodic processes in the associated structures. In this study, we developed a mathematical model for finite-lifetime and randomly occurring transients, and found that quasi-periodic processes with periods longer than the timescale of the transients, are detectable intrinsically in the form of trains. We simulate their propagation in an empirical solar atmospheric model with chromosphere, transition region, and corona. We found that, due to the filtering effect of the chromospheric cavity, only the resonance period of the acoustic resonator is able to propagate to the upper atmosphere; such a scenario is applicable to slow magnetoacoustic waves in sunspots and active regions. If the thermal structure of the atmosphere is less wild and acoustic resonance does not take place, the long-period oscillations could propagate to the upper atmosphere. Such a case would be more likely to occur in polar plumes.

OSTI ID:
22661067
Journal Information:
Astrophysical Journal, Supplement Series, Vol. 224, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0067-0049
Country of Publication:
United States
Language:
English