skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Critical role of morphology on the dielectric constant of semicrystalline polyolefins

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4953182· OSTI ID:22660764
; ;  [1];  [2]
  1. Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269 (United States)
  2. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

A particularly attractive method to predict the dielectric properties of materials is density functional theory (DFT). While this method is very popular, its large computational requirements allow practical treatments of unit cells with just a small number of atoms in an ordered array, i.e., in a crystalline morphology. By comparing DFT and Molecular Dynamics (MD) simulations on the same ordered arrays of functional polyolefins, we confirm that both methodologies yield identical estimates for the dipole moments and hence the ionic component of the dielectric storage modulus. Additionally, MD simulations of more realistic semi-crystalline morphologies yield estimates for this polar contribution that are in good agreement with the limited experiments in this field. However, these predictions are up to 10 times larger than those for pure crystalline simulations. Here, we show that the constraints provided by the surrounding chains significantly impede dipolar relaxations in the crystalline regions, whereas amorphous chains must sample all configurations to attain their fully isotropic spatial distributions. These results, which suggest that the amorphous phase is the dominant player in the context, argue strongly that the proper polymer morphology needs to be modeled to ensure accurate estimates of the ionic component of the dielectric constant.

OSTI ID:
22660764
Journal Information:
Journal of Chemical Physics, Vol. 144, Issue 23; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English