A pillar-layered metal-organic framework as luminescent sensor for selective and reversible response of chloroform
A new 3D metal-organic framework, namely, (Zn{sub 4}(H{sub 2}BPTC){sub 2}(HCOO){sub 4}){sub n} (SNNU-1, H{sub 4}BPTC=biphenyl-3,3',5,5'-tetracarboxylic acid, SNNU=Shaanxi Normal University) has been solvothermal synthesized. Four independent tetrahedral Zn atoms are connected by organic ligands to form a 2D Zn-H{sub 2}BPTC layer, which is further bridged by in-situ generated HCOO{sup -} to give the 3D pillar-layered framework of SNNU-1. Unique Zn and H{sub 2}BPTC all act as 4-connected nodes leading to a new 4,4,4-connected topological net with point symbol of (4·5·6{sup 2}·8{sup 2})(4·5{sup 2}·6{sup 2}·8)(5{sup 2}·6{sup 3}·7). Notably, intense blue emission band is observed for SNNU-1, which exhibits solvent-dependent effect. Compared to other common organic solvents, chloroform can specially improve the photoluminescent intensity of SNNU-1. Further repeated response and release experiments clearly showed that SNNU-1 can act as luminescent sensor for selective and reversible detection of chloroform. - Graphical abstract: Zn{sup 2+} ions are bridged by aromatic tetracarboxylate ligands and inorganic formate anions to give a microporous pillar layered open-framework, which exhibits not only strong photoluminescence but also selective and reversible luminescent sensing for chloroform. - Highlights: • Novel Zn-tetracarboxylate-formate microporous pillar layered open-framework. • New 4,4,4-connected topology and rod-packing net. • Solvent-dependent photoluminescent intensity. • Selective and reversible response for chloroform.
- OSTI ID:
- 22658218
- Journal Information:
- Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Vol. 247; ISSN 0022-4596; ISSN JSSCBI
- Country of Publication:
- United States
- Language:
- English
Similar Records
A series of novel metal–organic coordination polymers constructed from the new 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole spacer and aromatic carboxylates: Synthesis, crystal structures, and luminescence properties
Luminescent pillared Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands