Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Li{sub 3}Gd{sub 3}Te{sub 2}O{sub 12}:Eu{sup 3+}- an intense red phosphor for solid state lighting applications

Journal Article · · Journal of Solid State Chemistry
 [1];  [2]
  1. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India)
  2. Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, Nuzvid, Andhra Pradesh 521202 (India)

Li{sub 3}Gd{sub 3−3x}Eu{sub 3x}Te{sub 2}O{sub 12} (x=0.05−1.0) phases with garnet structure were synthesized by high temperature solid state reaction and the photoluminescence properties were investigated. The appearance of bands due to intra 4 f transitions of Gd{sup 3+} in the excitation spectra recorded by monitoring the 612 nm emission line of the activator indicates Gd{sup 3+}→Eu{sup 3+} energy transfer in this host lattice. Under 395 nm excitation, the electric dipole transition is predominant in the emission spectrum of Eu{sup 3+} and is in agreement with the C{sub 2} point group (noncentrosymmetric) of the EuO{sub 8} polyhedron. The critical concentration of the Eu{sup 3+} activator in this series was found to be 0.6 (x=0.2) above which, concentration quenching occurs. The emission intensity of the phosphor composition, Li{sub 3}Gd{sub 2.4}Eu{sub 0.6}Te{sub 2}O{sub 12} is ~4 times that of the commercial sample of Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor. - Highlights: • New Eu{sup 3+} doped garnet. • Intense electric dipole emission. • Gd{sup 3+}→Eu{sup 3+} energy transfer.

OSTI ID:
22658199
Journal Information:
Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Vol. 246; ISSN 0022-4596; ISSN JSSCBI
Country of Publication:
United States
Language:
English