skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal-ion exchange induced structural transformation as a way of forming novel Ni(II)− and Cu(II)−salicylaldimine structures

Journal Article · · Journal of Solid State Chemistry

A Zn(II)−salicylaldimine complex [Zn(L{sup salpyca})(H{sub 2}O)]{sub n} (1, where H{sub 2}L{sup salpyca}=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)−salicylaldimine complex [Ni(L{sup salpyca})(H{sub 2}O){sub 3}] (2) and an infinite Cu(II)−salicylaldimine complex ([Cu(L{sup salpyca})]·3H{sub 2}O){sub n} (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1–3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere of metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis. - Graphical abstract: A Zn(II)−salicylaldimine zigzag chain has been successfully converted to a Ni(II)−salicylaldimine supramolecular zigzag chain and a Cu(II)−salicylaldimine coordinative zigzag chain through metal-ion exchange induced structural transformations, which is not achieved by Mn(II) and Co(II) ions.

OSTI ID:
22658162
Journal Information:
Journal of Solid State Chemistry, Vol. 246; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English