skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

Abstract

Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases inmore » the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less

Authors:
; ; ; ; ;  [1];  [2]
  1. School of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070 (China)
  2. College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 (China)
Publication Date:
OSTI Identifier:
22658156
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 245; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; ADSORPTION ISOTHERMS; ALUMINIUM HYDROXIDES; AQUEOUS SOLUTIONS; CALCIUM HYDROXIDES; CHEMICAL PREPARATION; CHROMIUM IONS; FOURIER TRANSFORMATION; INFRARED SPECTRA; MAGNESIUM CHLORIDES; PRECURSOR; REMOVAL; SALTS; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION

Citation Formats

Zhong, Lihua, He, Xiaoman, Qu, Jun, Li, Xuewei, Lei, Zhiwu, Zhang, Qiwu, and Liu, Xinzhong. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides. United States: N. p., 2017. Web. doi:10.1016/J.JSSC.2016.10.022.
Zhong, Lihua, He, Xiaoman, Qu, Jun, Li, Xuewei, Lei, Zhiwu, Zhang, Qiwu, & Liu, Xinzhong. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides. United States. doi:10.1016/J.JSSC.2016.10.022.
Zhong, Lihua, He, Xiaoman, Qu, Jun, Li, Xuewei, Lei, Zhiwu, Zhang, Qiwu, and Liu, Xinzhong. Sun . "Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides". United States. doi:10.1016/J.JSSC.2016.10.022.
@article{osti_22658156,
title = {Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides},
author = {Zhong, Lihua and He, Xiaoman and Qu, Jun and Li, Xuewei and Lei, Zhiwu and Zhang, Qiwu and Liu, Xinzhong},
abstractNote = {Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.},
doi = {10.1016/J.JSSC.2016.10.022},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 245,
place = {United States},
year = {Sun Jan 15 00:00:00 EST 2017},
month = {Sun Jan 15 00:00:00 EST 2017}
}
  • A novel red light-emitting material, Ca{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+}, which is the first example found in the Ca{sub 3}Al{sub 2}O{sub 6} host, was prepared by calcination of a layered double hydroxide precursor at 1350 deg. C. The precursor, [Ca{sub 2.9-x}Al{sub 2}Eu{sub x}(OH){sub 9.8}](NO{sub 3}){sub 2+x}.2.5H{sub 2}O, was prepared by coprecipitation of metal nitrates with sodium hydroxide. The material is a loose powder composed of irregular particles formed from aggregation of particles of a few nanometers, as shown in scanning electron microscope (SEM) images. It was found that the photoluminescence intensity reached the maximum when the calcination temperature was 1350more » deg. C and the concentration of Eu{sup 3+} was 1.0%. The material emits bright red emission at 614 nm under a radiation of {lambda}=250 nm. - Graphical abstract: Calcination of a layered double hydroxide precursor produces Ca{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+}, which is very easy to be pulverized. It is proposed that Eu{sup 3+} takes the place of one Ca{sup 2+} (green spheres in the picture, pink pyramids are [AlO{sub 4}] tetrahedrons) in the cell of Ca{sub 3}Al{sub 2}O{sub 6}. The Ca{sup 2+} could be any one of the bigger green spheres without inversion symmetry, and emits red light under a UV radiation of {lambda}=250 nm. Display Omitted.« less
  • Graphical abstract: Display Omitted Highlights: ► Decomposition of CO{sub 3}·Cu–Al LDH occurred in four stages. ► The edta·Cu–Al LDH was found to take up Y{sup 3+} in aqueous solution. ► The edta·Cu–Al LDH could selectively take up rare earth ions from a mixed solution. -- Abstract: CO{sub 3}{sup 2−}-intercalated Cu–Al layered double hydroxide (CO{sub 3}·Cu–Al LDH) was calcined to yield Cu–Al oxide, and then ethylenediaminetetraacetate-intercalated Cu–Al LDH (edta·Cu–Al LDH) was prepared by reconstructing Cu–Al oxide in edta solution. Decomposition of CO{sub 3}·Cu–Al LDH occurred in four stages. The production of Cu–Al oxide was caused by the thermal decomposition of CO{submore » 3}·Cu–Al LDH until the third stage. The first stage was the elimination of adsorbed surface water and interlayer water in CO{sub 3}·Cu–Al LDH. The second and third stages were the dehydroxylation of the brucite-like octahedral layers and the elimination of CO{sub 3}{sup 2−} intercalated in the interlayers. The edta·Cu–Al LDH was found to take up Y{sup 3+} in aqueous solution. The uptake of Y{sup 3+} was caused not only by the chelating function of Hedta{sup 3−} in the interlayer but also by the chemical behavior of Cu–Al LDH itself. The edta·Cu–Al LDH was found to selectively take up rare earth ions from a mixed solution. The degree of uptake was high, in the order Sc{sup 3+} > Y{sup 3+} > La{sup 3+} for all time durations, which was attributable to differences among the stabilities of Sc(edta){sup −}, Y(edta){sup −} and La(edta){sup −}.« less
  • The co-precipitation method was used to prepare Zn-Al-NO{sub 3}-LDH at different Zn{sup 2+}/Al{sup 3+} molar ratios (2, 3, 4, 5 and 6) and pH value of 7.5. The structure, textural, composition and morphological properties were investigated using powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and scanning electron microscope (SEM), respectively. The crystallinity of LDH samples were found to improve as molar ratio decreased which is attributed to the distortion of the hydroxide layers networks of the LDH crystal by the larger difference in ionic radii of Zn{sup 2+} and Al{sup 3+}. The optical band gap energymore » of LDH samples were evaluated using absorbance data from UV-Vis-NIR Diffuse reflectance spectroscopy. Band gaps were affected by the variation of the Zn{sup 2+}/Al{sup 3+} molar ratio is due to the formation of the low crystalline phases (ZnO and ZnAl{sub 2}O{sub 4}). The water molecules and anionic NO{sub 3}{sup -} in the LDH interlayer were responsible for the generation of the dielectric response. This response can be described by an anomalous low frequency dispersion using the second type of Universal Power Law. The dominance of ZnO dipoles and charge carriers (NO{sub 3}{sup -} ions) in the dielectric relaxation increases with the increasing molar ratio. - Graphical abstract: (a) Schematic diagram of Zn-Al- NO{sub 3}-LDH shows the LDH structure, (b) Kubelka-Munk transformed reflectance spectra and c. The dielectric constant versus frequency of Zn-Al- NO{sub 3}-LDH samples. Highlights: Black-Right-Pointing-Pointer Zn-Al-NO{sub 3}-LDH was prepared at different Zn{sup 2+}/Al{sup 3+} molar ratios (2, 3, 4, 5 and 6). Black-Right-Pointing-Pointer The crystallinity of LDH phase decreased with increase of Zn{sup 2+}/Al{sup 3+} molar ratio. Black-Right-Pointing-Pointer The optical band gaps of LDH samples have been measured. Black-Right-Pointing-Pointer Dielectric response of LDH can be described by anomalous low frequency dispersion.« less
  • Zinc hydroxide chloride particles were synthesized by hydrolysis of ZnCl{sub 2} solutions dissolving AlCl{sub 3} at different atomic Al/Zn ratios from 0 to 1.0 and characterized by various techniques. Increasing Al/Zn ratio changed the crystal phases of the products as ZnO{sup {yields}}ZnO+ZHC (Zn{sub 5}(OH){sub 8}Cl{sub 2}.H{sub 2}O){sup {yields}}ZHC{sup {yields}}LDH (layered double hydroxides, Zn-Al-Cl) and the particle morphology as agglomerates (ZnO){sup {yields}}fine particles (ZnO){sup {yields}}plates (ZHC)+rods (ZnO){sup {yields}}plates (ZHC){sup {yields}}plates (LDH). The atomic Cl/Zn ratios of LDH particles formed at Al/Zn{>=}0.3 were ca. 0.3 despite the increase of Al/Zn ratio, being due to the intercalation of CO{sub 3} {sup 2-} intomore » the LDH crystal. The OH{sup -} content of LDH estimated by TG was reduced by the deprotonation of OH{sup -} to counteract the excess positive charge produced by replacing Zn(II) with Al(III). ZHC exhibited a high adsorption selectivity of H{sub 2}O.« less
  • In this paper, we report our results on the synthesis of Mg-Al and Zn-Al-layered double hydroxides using the laser ablation in the liquid technique. To prepare these layered double hydroxides (LDH) we first began with the laser generation of a Mg (or zinc) target submerged in deionized water and then ablated an aluminum target submerged in the previously prepared Mg-deionized water suspensions (Mg-dw) to produce Mg-Al LDH and in Zn-dw to prepare Zn-Al LDH. In these ablation tests, the Mg ablation duration was selected to vary from 5 to 60 min, while the Al ablation duration was kept constant atmore » 30 min for all samples. The generated Mg-Al LDH was a gel-like and well crystallized nanoparticles of a rod-like shape and were arranged in a well-organized pattern. When the Mg ablation duration between 25 and 35 min, the synthesized nanocrystals were stoichiometric with a formula of Mg6Al2(OH)(18)4.5 (H2O), the interlayer distance (d((0 0 3))-spacing) was 7.8 angstrom and the average grain size was 8.0 nm. The synthesized Zn-Al LDH revealed various lamellar thin plate-like nanostructures of hexagonal morphologies. The average diameters of these structures was about 500 nm and the thickness of a single layer was approximately about 6.0 nm. The XRD diffraction peaks were indexed in hexagonal lattice with a(o) = 3.07 angstrom and c(o) = 15.12 angstrom. These indexes were (002), (004), and (008) and the corresponding interlayer distances, d-spacing (angstrom), were 7.56 (002), 3.782 (004), and 1.891 (008), respectively.« less