skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of two novel chiral-type formate frameworks templated by protonated diethylamine and ammonium cations

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [2]; ;  [1]
  1. Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wrocław 2 (Poland)
  2. Department of Bioorganic Chemistry, University of Economics, 53 345 Wroclaw (Poland)

Two novel formate frameworks templated by ammonium and diethylammonium (DEtA{sup +}) cations have been synthesized. Chemical analysis as well as optical, Raman and IR studies showed partial substitution of nickel ions by Cr(III) or Fe(III). X-ray diffraction revealed that these compounds crystallize in the chiral-type structure of P6{sub 3}22 symmetry. The oxygen atoms from formate ligands form octahedral coordination around the metal centers and the octahedra are bridged by the formate groups in the anti-anti mode configuration forming the hexagonal structure with large channels expanding along the c direction. The channels are filled with disordered DEtA{sup +} and NH{sub 4}{sup +} ions and they show unusual compression with the c/a ratio of only 0.862 and 0.852 for the iron- and chromium-containing compound, respectively. Magnetic studies revealed that the both compounds order magnetically at low temperatures but the ordering temperature is significantly higher for the iron compound (37 K) compared to the chromium analogue (26 K). - Graphical abstract: Temperature dependence of magnetization M of DEtAFeNi showing magnetic order at 37 K. - Highlights: • Two novel chiral formates of P6{sub 3}22 symmetry were synthesized. • The structures contain strongly compressed hexagonal channels filled with disordered cations. • The obtained compounds exhibit magnetic order at low temperatures. • Raman, IR and absorption spectra prove incorporation of Cr(III) and Fe(III) in the frameworks.

OSTI ID:
22658138
Journal Information:
Journal of Solid State Chemistry, Vol. 245; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English