Variable dimensionality and framework found in a series of quaternary zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·xH{sub 2}O (A = Na, Rb, and Cs; 0≤x≤1) and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 3}·2H{sub 2}O
Journal Article
·
· Journal of Solid State Chemistry
Five new alkali metal zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·xH{sub 2}O (A = Na, Rb, and Cs; 0≤x≤1) and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 3}·2H{sub 2}O have been synthesized by heating a mixture of ZnO, SeO{sub 2} and A{sub 2}CO{sub 3} (A = Na, Rb, and Cs), and characterized by X-ray diffraction (XRD) and spectroscopic analyses techniques. All of the reported materials revealed a rich structural chemistry with different frameworks and connection modes of Zn{sup 2+}. While Rb{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4} and Cs{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}·H{sub 2}O revealed three-dimensional frameworks consisting of isolated ZnO{sub 4} tetrahedra and SeO{sub 3} polyhedra, Na{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}, Cs{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}, and Cs{sub 2}Zn{sub 2}(SeO{sub 3}){sub 3}·2H{sub 2}O contained two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers. Specifically, whereas isolated ZnO{sub 4} tetrahedra and SeO{sub 3} polyhedra are arranged into two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers in two cesium compounds, circular [Zn{sub 3}O{sub 10}]{sup 14-} chains and SeO{sub 3} linkers are formed in two-dimensional [Zn{sub 3}(SeO{sub 3}){sub 4}]{sup 2-} layers in Na{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4}. Close structural examinations suggest that the size of alkali metal is significant in determining the framework geometry as well as connection modes of transition metal cations. - Graphical abstract: Variable dimensions and frameworks were found in a series of quaternary zinc selenites, A{sub 2}Zn{sub 3}(SeO{sub 3}){sub 4} (A = Na, Rb and Cs). - Highlights: • Five novel quaternary zinc selenites are synthesized. • All the selenites with different structures contain polarizable d{sup 10} and lone pair cations. • The size of alkali metal cations is significant in determining the framework geometry.
- OSTI ID:
- 22658136
- Journal Information:
- Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Vol. 245; ISSN 0022-4596; ISSN JSSCBI
- Country of Publication:
- United States
- Language:
- English
Similar Records
New quaternary alkali metal cadmium selenites, A{sub 2}Cd(SeO{sub 3}){sub 2} (A = K, Rb, and Cs) and Li{sub 2}Cd{sub 3}(SeO{sub 3}){sub 4}
High temperature redox reactions with uranium: Synthesis and characterization of Cs(UO{sub 2})Cl(SeO{sub 3}), Rb{sub 2}(UO{sub 2}){sub 3}O{sub 2}(SeO{sub 3}){sub 2}, and RbNa{sub 5}U{sub 2}(SO{sub 4}){sub 7}
Thermal, spectroscopic and magnetic properties of the Co {sub x}Ni{sub 1-x}(SeO{sub 3}).2H{sub 2}O (x = 0, 0.4, 1) phases
Journal Article
·
Thu Dec 14 23:00:00 EST 2017
· Journal of Solid State Chemistry
·
OSTI ID:22742077
High temperature redox reactions with uranium: Synthesis and characterization of Cs(UO{sub 2})Cl(SeO{sub 3}), Rb{sub 2}(UO{sub 2}){sub 3}O{sub 2}(SeO{sub 3}){sub 2}, and RbNa{sub 5}U{sub 2}(SO{sub 4}){sub 7}
Journal Article
·
Tue Oct 15 00:00:00 EDT 2013
· Journal of Solid State Chemistry
·
OSTI ID:22274117
Thermal, spectroscopic and magnetic properties of the Co {sub x}Ni{sub 1-x}(SeO{sub 3}).2H{sub 2}O (x = 0, 0.4, 1) phases
Journal Article
·
Wed May 18 00:00:00 EDT 2005
· Materials Research Bulletin
·
OSTI ID:20889769