skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and catalytic activity of the metastable phase of gold phosphide

Journal Article · · Journal of Solid State Chemistry
; ;  [1]; ;  [2];  [1]
  1. Department of Chemistry, 107 Physical Sciences I, Oklahoma State University, Stillwater, OK 74078 (United States)
  2. Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401 (United States)

Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Graphical abstract: Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous and gold nanoparticles as reactants. We demonstrate that the surface capping ligand of the gold nanoparticle precursors influence the purity and extent to which the Au{sub 2}P{sub 3} phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanoparticles are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Highlights: • The surface chemistry of gold affects the synthetic yields of Au{sub 2}P{sub 3}. • Imaging of Au{sub 2}P{sub 3} with transmission electron microscopy results in decomposition. • Au{sub 2}P{sub 3} nanoparticles exhibit activity towards the hydrogen evolution reaction.

OSTI ID:
22658071
Journal Information:
Journal of Solid State Chemistry, Vol. 242, Issue Part 2; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English