skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamic colloidal assembly pathways via low dimensional models

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4951698· OSTI ID:22657833
; ;  [1]
  1. Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterized by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.

OSTI ID:
22657833
Journal Information:
Journal of Chemical Physics, Vol. 144, Issue 20; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English