skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

Abstract

Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion:more » This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

Authors:
; ; ; ;  [1]; ;  [2]; ;  [3]; ; ; ;  [4]
  1. Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do (Korea, Republic of)
  2. Pusan National University, Busan (Korea, Republic of)
  3. Samsung electronics Co., Suwon, Gyeonggi-do (Korea, Republic of)
  4. Pusan National University Hospital, Busan (Korea, Republic of)
Publication Date:
OSTI Identifier:
22654048
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ABSORBED RADIATION DOSES; BIOMEDICAL RADIOGRAPHY; CAT SCANNING; COMPUTERIZED SIMULATION; ELECTRIC POTENTIAL; MONTE CARLO METHOD; PATIENTS; RADIATION DOSE DISTRIBUTIONS

Citation Formats

Youn, H, Jeon, H, Nam, J, Lee, J, Lee, J, Kim, J, Kim, H, Cho, M, Yun, S, Park, D, Kim, W, Ki, Y, and Kim, D. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT. United States: N. p., 2016. Web. doi:10.1118/1.4957668.
Youn, H, Jeon, H, Nam, J, Lee, J, Lee, J, Kim, J, Kim, H, Cho, M, Yun, S, Park, D, Kim, W, Ki, Y, & Kim, D. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT. United States. doi:10.1118/1.4957668.
Youn, H, Jeon, H, Nam, J, Lee, J, Lee, J, Kim, J, Kim, H, Cho, M, Yun, S, Park, D, Kim, W, Ki, Y, and Kim, D. 2016. "TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT". United States. doi:10.1118/1.4957668.
@article{osti_22654048,
title = {TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT},
author = {Youn, H and Jeon, H and Nam, J and Lee, J and Lee, J and Kim, J and Kim, H and Cho, M and Yun, S and Park, D and Kim, W and Ki, Y and Kim, D},
abstractNote = {Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.},
doi = {10.1118/1.4957668},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To develop a CBCT HU correction method using a patient specific HU to mass density conversion curve based on a novel image registration and organ mapping method for head-and-neck radiation therapy. Methods: There are three steps to generate a patient specific CBCT HU to mass density conversion curve. First, we developed a novel robust image registration method based on sparseness analysis to register the planning CT (PCT) and the CBCT. Second, a novel organ mapping method was developed to transfer the organs at risk (OAR) contours from the PCT to the CBCT and corresponding mean HU values of eachmore » OAR were measured in both the PCT and CBCT volumes. Third, a set of PCT and CBCT HU to mass density conversion curves were created based on the mean HU values of OARs and the corresponding mass density of the OAR in the PCT. Then, we compared our proposed conversion curve with the traditional Catphan phantom based CBCT HU to mass density calibration curve. Both curves were input into the treatment planning system (TPS) for dose calculation. Last, the PTV and OAR doses, DVH and dose distributions of CBCT plans are compared to the original treatment plan. Results: One head-and-neck cases which contained a pair of PCT and CBCT was used. The dose differences between the PCT and CBCT plans using the proposed method are −1.33% for the mean PTV, 0.06% for PTV D95%, and −0.56% for the left neck. The dose differences between plans of PCT and CBCT corrected using the CATPhan based method are −4.39% for mean PTV, 4.07% for PTV D95%, and −2.01% for the left neck. Conclusion: The proposed CBCT HU correction method achieves better agreement with the original treatment plan compared to the traditional CATPhan based calibration method.« less
  • Purpose: The functionality of the Dose-Tracking System (DTS) has been expanded to include the calculation of the Kerma-Area Product (KAP) for non-uniform x-ray fields such as result from the use of compensation filters during fluoroscopic procedures Methods: The DTS calculates skin dose during fluoroscopic interventions and provides a color-coded dose map on a patient-graphic model. The KAP is the integral of air kerma over the x-ray field and is usually measured with a transmission-ionization chamber that intercepts the entire x-ray beam. The DTS has been modified to determine KAP when there are beam non-uniformities that can be modeled. For example,more » the DTS includes models of the three compensation filters with tapered edges located in the collimator assembly of the Toshiba Infinix fluoroscopic C-Arm and can track their movement. To determine the air kerma after the filters, DTS includes transmission factors for the compensation filters as a function of kVp and beam filtration. A virtual KAP dosimeter is simulated in the DTS by an array of graphic vertices; the air kerma at each vertex is corrected by the field non-uniformity, which in this case is the attenuation factor for those rays which pass through the filter. The products of individual vertex air-kerma values for all vertices within the beam times the effective-area-per-vertex are summed for each x-ray pulse to yield the KAP per pulse and the cumulative KAP for the procedure is then calculated. Results: The KAP values estimated by DTS with the compensation filter inserted into the x-ray field agree within ± 6% with the values displayed on the fluoroscopy unit monitor, which are measured with a transmission chamber. Conclusion: The DTS can account for field non-uniformities such as result from the use of compensation filters in calculating KAP and can obviate the need for a KAP transmission ionization chamber. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
  • Purpose: To demonstrate an efficient and clinically relevant patient specific QA method by reconstructing 3D patient dose from 2D EPID images for IMRT plans. Also to determine the usefulness of 2D QA metrics when assessing 3D patient dose deviations. Methods: Using the method developed by King et al (Med Phys 39(5),2839–2847), EPID images of IMRT fields were acquired in air and converted to dose at 10 cm depth (SAD setup) in a flat virtual water phantom. Each EPID measured dose map was then divided by the corresponding treatment planning system (TPS) dose map calculated with an identical setup, to derivemore » a 2D “error matrix”. For each field, the error matrix was used to adjust the doses along the respective ray lines in the original patient 3D dose. All field doses were combined to derive a reconstructed 3D patient dose for quantitative analysis. A software tool was developed to efficiently implement the entire process and was tested with a variety of IMRT plans for 2D (virtual flat phantom) and 3D (in-patient) QA analysis. Results: The method was tested on 60 IMRT plans. The mean (± standard deviation) 2D gamma (2%,2mm) pass rate (2D-GPR) was 97.4±3.0% and the mean 2D gamma index (2D-GI) was 0.35±0.06. The 3D PTV mean dose deviation was 1.8±0.8%. The analysis showed very weak correlations between both the 2D-GPR and 2D-GI when compared with PTV mean dose deviations (R2=0.3561 and 0.3632 respectively). Conclusion: Our method efficiently calculates 3D patient dose from 2D EPID images, utilising all of the advantages of an EPID-based dosimetry system. In this study, the 2D QA metrics did not predict the 3D patient dose deviation. This tool allows reporting of the 3D volumetric dose parameters thus providing more clinically relevant patient specific QA.« less
  • Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions includedmore » in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.« less
  • Purpose: To develop new ionization chamber dosimetry of absorbed dose to water in diagnostic kV x-ray beams, by using a beam quality conversion factor, kQ, for Co-60 to kV x-ray and an ionization conversion factor for a water-substitute plastic phantom. Methods: kQ was calculated for aluminum half value-layers (Al-HVLs) of 1.5 mm to 8 mm which were generated by kV x-ray beams of 50 to 120 kVp. Twenty-two energy spectra for ten effective energies (Eeff) were calculated by a SpecCalc program. Depth doses in water were calculated at 5 × 5 to 30 × 30 cm{sup 2} fields. Output factorsmore » were also obtained from the dose ratio for a 10 × 10 cm{sup 2} field. kQ was obtained for a PTW30013 Former ion chamber. In addition, an ionization conversion factor of the PWDT phantom to water was calculated. All calculations were performed with EGSnrc/cavity code and egs-chamber codes. Results: The x-ray beam energies for 1.5 mm to 8 mm Al-HVLs ranged in Eeff of 25.7 to 54.3 keV. kQ for 1.5 mm to 8 mm Al-HVLs were 0.831 to 0.897, at 1 and 2 cm depths for a 10 × 10 cm2 field. Similarly, output factors for 5 × 5 to 30 × 30 cm{sup 2} fields were 0.937 to 1.033 for 25.7 keV and 0.857 to 1.168 for 54.3 keV. The depth dose in a PWDT phantom decreased up to 5% compared to that in water at depth of ten percent of maximum dose for 1.5 mm Al-HVL. The ionization ratios of water/PWDT phantoms for the PTW30013 chamber were 1.012 to 1.007 for 1.5 mm to 8 mm Al-HVLs at 1 cm depth. Conclusion: It became possible to directly measure the absorbed dose to water with the ionization chamber in diagnostic kV x-ray beams, by using kQ and the PWDT phantom.« less