Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

MO-FG-CAMPUS-TeP2-02: First Experiences and Perspectives in Using Direct Multicriteria Optimization (MCO) On Volumetric-Modulated Arc Therapy (VMAT) for Head and Neck Cancer

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4957360· OSTI ID:22653906
; ; ; ;  [1]
  1. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

Purpose: To report the first experiences and perspectives in using direct multicriteria optimization (MCO) on volumetric-modulated arc therapy (VMAT) for head and neck (H&N) cancer. Methods: Ten prior patients with tumors in representative H&N regions were selected to evaluate direct MCO-VMAT in RayStation v5.0 beta. The patients were previously treated by intensity-modulated radiation therapy (IMRT) with MCO on an Elekta linear accelerator with Agility multileaf collimator. To avoid radiating eyes and shoulders, MCO-VMAT required one to three partial-arc groups, with each group consisting of single or dual arcs. All MCO-VMAT plans were approved by a radiation oncologist. The MCO-VMAT and MCO-IMRT plans were compared using V{sub 100}, D{sub 5}, homogeneity index (HI) and conformity index (CI) for planning target volume (PTV), D{sub mean} and D{sub 50} for six parallel organs and D{sub max} for five serial organs. Patient-specific quality assurance (QA) was performed using ArcCHECK for MCO-VMAT and Matrixx for MCO-IMRT with results analyzed using gamma criteria of 3%/3mm. Results: MCO-VMAT provided better V{sub 100} (+0.8%) lower D{sub 5}(− 0.3 Gy), lower HI (−0.27) and comparable CI (+0.05). MCO-VMAT decreased D{sub mean} and D{sub 50} for multiple parallel organs in seven of the ten patients. On average the reduction ranged from 2.1 (larynx) to 7.6 Gy (esophagus). For the nasal cavity and nasopharynx plans significant reduction in D{sub max} was observed for optics (up to 11 Gy) brainstem (6.4 Gy), cord (2.1 Gy) and mandible (6.7 Gy). All MCO-VMAT and -IMRT plans passed clinical QA. MCO-VMAT required slightly longer planning time due to the more complex VMAT optimization. The net beam-on time for the MCO-VMAT plans ranged from 80 to 242 seconds, up to 9 minutes shorter than MCO-IMRT. Conclusion: With similar target coverage, reduced organ dose, comparable planning time, and significantly faster treatment, MCO-VMAT is very likely to become the modality of choice in RayStation v5.0 for H&N cancer.

OSTI ID:
22653906
Journal Information:
Medical Physics, Journal Name: Medical Physics Journal Issue: 6 Vol. 43; ISSN 0094-2405; ISSN MPHYA6
Country of Publication:
United States
Language:
English

Similar Records

Multicriteria optimization informed VMAT planning
Journal Article · Tue Apr 01 00:00:00 EDT 2014 · Medical Dosimetry · OSTI ID:22267971

SU-F-T-344: Commissioning Constant Dose Rate VMAT in the Raystation Treatment Planning System for a Varian Clinac IX
Journal Article · Wed Jun 15 00:00:00 EDT 2016 · Medical Physics · OSTI ID:22648946

Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning
Journal Article · Wed Oct 01 00:00:00 EDT 2014 · Medical Dosimetry · OSTI ID:22420847