skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-FG-CAMPUS-IeP1-01: Alternative K-Edge Filters for Low-Energy Image Acquisition in Contrast Enhanced Spectral Mammography

Abstract

Purpose: In Contrast Enhanced Spectral Mammography (CESM), Rh filter is often used during low-energy image acquisition. The potential for using Ag, In and Sn filters, which exhibit K-edge closer to, and just below that of Iodine, instead of the Rh filter, was investigated for the low-energy image acquisition. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for 50µm Rh were compared with other potential K-edge filters (Ag, In and Sn), all with K-absorption edge below that of Iodine. Two strategies were investigated: fixed kVp and filter thickness (50µm for all filters) resulting in HVT variation, and fixed kVp and HVT resulting in variation in Ag, In and Sn thickness. Monte Carlo simulations (GEANT4) were conducted to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Rh and other K-edge filters. Results: Ag, In and Sn filters (50µm thick) increased photon fluence/mAs by 1.3–1.4, 1.8–2, and 1.7–2 at 28-32 kVp compared to 50µm Rh, which could decrease exposure time. Additionally, the fraction of spectra closer to and just below Iodine’s K-edge increased with these filters, which could improve post-subtraction image contrast. For HVT matched to 50µmmore » Rh filtered spectra, the thickness range for Ag, In, and Sn were (41,44)µm, (49,55)µm and (45,53)µm, and increased photon fluence/mAs by 1.5–1.7, 1.6–2, and 1.6–2.2, respectively. Monte Carlo simulations showed that neither the SPR nor the scatter PSF of Ag, In and Sn differed from Rh, indicating no additional detriment due to x-ray scatter. Conclusion: The use of Ag, In and Sn filters for low-energy image acquisition in CESM is potentially feasible and could decrease exposure time and may improve post-subtraction image contrast. Effect of these filters on radiation dose, contrast, noise and associated metrics are being investigated. Funding Support: Supported in part by NIH R01CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less

Authors:
; ;  [1]
  1. University of Massachusetts Medical School, Worcester, MA (United States)
Publication Date:
OSTI Identifier:
22653883
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED SIMULATION; FILTERS; IMAGES; IODINE; MAMMARY GLANDS; MONTE CARLO METHOD; PHOTONS; RADIATION DOSES; SILVER; THICKNESS; X RADIATION

Citation Formats

Shrestha, S, Vedantham, S, and Karellas, A. MO-FG-CAMPUS-IeP1-01: Alternative K-Edge Filters for Low-Energy Image Acquisition in Contrast Enhanced Spectral Mammography. United States: N. p., 2016. Web. doi:10.1118/1.4957333.
Shrestha, S, Vedantham, S, & Karellas, A. MO-FG-CAMPUS-IeP1-01: Alternative K-Edge Filters for Low-Energy Image Acquisition in Contrast Enhanced Spectral Mammography. United States. doi:10.1118/1.4957333.
Shrestha, S, Vedantham, S, and Karellas, A. Wed . "MO-FG-CAMPUS-IeP1-01: Alternative K-Edge Filters for Low-Energy Image Acquisition in Contrast Enhanced Spectral Mammography". United States. doi:10.1118/1.4957333.
@article{osti_22653883,
title = {MO-FG-CAMPUS-IeP1-01: Alternative K-Edge Filters for Low-Energy Image Acquisition in Contrast Enhanced Spectral Mammography},
author = {Shrestha, S and Vedantham, S and Karellas, A},
abstractNote = {Purpose: In Contrast Enhanced Spectral Mammography (CESM), Rh filter is often used during low-energy image acquisition. The potential for using Ag, In and Sn filters, which exhibit K-edge closer to, and just below that of Iodine, instead of the Rh filter, was investigated for the low-energy image acquisition. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for 50µm Rh were compared with other potential K-edge filters (Ag, In and Sn), all with K-absorption edge below that of Iodine. Two strategies were investigated: fixed kVp and filter thickness (50µm for all filters) resulting in HVT variation, and fixed kVp and HVT resulting in variation in Ag, In and Sn thickness. Monte Carlo simulations (GEANT4) were conducted to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Rh and other K-edge filters. Results: Ag, In and Sn filters (50µm thick) increased photon fluence/mAs by 1.3–1.4, 1.8–2, and 1.7–2 at 28-32 kVp compared to 50µm Rh, which could decrease exposure time. Additionally, the fraction of spectra closer to and just below Iodine’s K-edge increased with these filters, which could improve post-subtraction image contrast. For HVT matched to 50µm Rh filtered spectra, the thickness range for Ag, In, and Sn were (41,44)µm, (49,55)µm and (45,53)µm, and increased photon fluence/mAs by 1.5–1.7, 1.6–2, and 1.6–2.2, respectively. Monte Carlo simulations showed that neither the SPR nor the scatter PSF of Ag, In and Sn differed from Rh, indicating no additional detriment due to x-ray scatter. Conclusion: The use of Ag, In and Sn filters for low-energy image acquisition in CESM is potentially feasible and could decrease exposure time and may improve post-subtraction image contrast. Effect of these filters on radiation dose, contrast, noise and associated metrics are being investigated. Funding Support: Supported in part by NIH R01CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.},
doi = {10.1118/1.4957333},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}