skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-E-BRB-02: Panel Member

Abstract

In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms of (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes andmore » OAR dose limits.« less

Authors:
 [1]
  1. University of Virginia (United States)
Publication Date:
OSTI Identifier:
22649574
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; DOSE LIMITS; IMAGES; LUNGS; NMR IMAGING; PANELS; PATIENTS; POSITRON COMPUTED TOMOGRAPHY

Citation Formats

Larner, J. MO-E-BRB-02: Panel Member. United States: N. p., 2016. Web. doi:10.1118/1.4957262.
Larner, J. MO-E-BRB-02: Panel Member. United States. doi:10.1118/1.4957262.
Larner, J. Wed . "MO-E-BRB-02: Panel Member". United States. doi:10.1118/1.4957262.
@article{osti_22649574,
title = {MO-E-BRB-02: Panel Member},
author = {Larner, J.},
abstractNote = {In this interactive session, lung SBRT patient cases will be presented to highlight real-world considerations for ensuring safe and accurate treatment delivery. An expert panel of speakers will discuss challenges specific to lung SBRT including patient selection, patient immobilization techniques, 4D CT simulation and respiratory motion management, target delineation for treatment planning, online treatment alignment, and established prescription regimens and OAR dose limits. Practical examples of cases, including the patient flow thought the clinical process are presented and audience participation will be encouraged. This panel session is designed to provide case demonstration and review for lung SBRT in terms of (1) clinical appropriateness in patient selection, (2) strategies for simulation, including 4D and respiratory motion management, and (3) applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent, and (4) image guidance in treatment delivery. Learning Objectives: Understand the established requirements for patient selection in lung SBRT Become familiar with the various immobilization strategies for lung SBRT, including technology for respiratory motion management Understand the benefits and pitfalls of applying multi imaging modality (4D CT imaging, MRI, PET) for tumor volume delineation and motion extent determination for lung SBRT Understand established prescription regimes and OAR dose limits.},
doi = {10.1118/1.4957262},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}