skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-DE-207B-10: Impact of Morphologic Characteristics On Radiomics Features From Contast-Enhanced CT for Primary Lung Tumors

Abstract

Purpose: Determine the impact of morphologic characteristics (e.g. necrosis, vascular enhancement, and cavitation) on radiomic features from contrast enhanced CT (CE-CT) in primary lung tumors. Methods: We developed an auto-segmentation algorithm to separate lung tumors on contrast-enhanced CT into cavitation (air), necrosis, tissue, and enhancing vessels using a combination of thresholding and region-growing. An auto-segmentation algorithm was also designed to identify necrosis on FDG-PET scans. Wilcoxon rank-sum tests were used to determine if significant differences existed in radiomics features (histogram-uniformity and Laplacian-of-Gaussian average) from 249 patients, found to prognostic in previous work, based on the presence/absence of morphologic features. Feature values were also compared between the original tumor contours and contours excluding a specific morphologic feature. Comparison of necrosis segmentation on CE-CT versus FDG-PET was performed in 78 patients to assess for agreement using the concordance correlation coefficient (CCC). Results: Tumors with cavitation and enhancing vasculature had lower uniformity values (p = 0.001 and p = 0.03, respectively). Tumors with enhancing vasculature and necrosis had higher Laplacian-of-Gaussian average values (measure of “edges” within the tumor) (p < 0.001). Removing these tissue types from regions-of-interest did not drastically alter either radiomic feature value (all scenarios had R{sup 2} > 0.8). Thismore » suggests there may be interactions between morphologic characteristics and the radiomic feature value of tumor tissue. Comparison of necrosis volume and percent necrosis volume of tumor were found to have CCC values of 0.85 and 0.76, respectively between CE-CT and FDG-PET segmentation methods. Conclusions: Tumors with enhancing vasculature, necrosis, and cavitation have higher radiomic feature values that are associated with poor prognosis than tumors without these features. Removing these tissue types from quantitative assessment did not drastically impact radiomic feature values. High reproducibility of CE-CT segmented necrosis compared to FDG-PET segmented necrosis provides a reasonable validation of segmentation accuracy on CE-CT.« less

Authors:
 [1]; ; ; ; ; ; ;  [2]
  1. University of North Carolina at Chapel Hill, Chapel Hill, NC (United States)
  2. UT MD Anderson Cancer Center, Houston, TX (United States)
Publication Date:
OSTI Identifier:
22649570
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ANIMAL TISSUES; BIOMEDICAL RADIOGRAPHY; CAVITATION; LUNGS; NECROSIS; NEOPLASMS

Citation Formats

Fried, D, Zhang, L, Fave, X, Ibbott, G, Zhou, S, Mawlawi, O, Liao, Z, and Court, L. MO-DE-207B-10: Impact of Morphologic Characteristics On Radiomics Features From Contast-Enhanced CT for Primary Lung Tumors. United States: N. p., 2016. Web. doi:10.1118/1.4957259.
Fried, D, Zhang, L, Fave, X, Ibbott, G, Zhou, S, Mawlawi, O, Liao, Z, & Court, L. MO-DE-207B-10: Impact of Morphologic Characteristics On Radiomics Features From Contast-Enhanced CT for Primary Lung Tumors. United States. doi:10.1118/1.4957259.
Fried, D, Zhang, L, Fave, X, Ibbott, G, Zhou, S, Mawlawi, O, Liao, Z, and Court, L. 2016. "MO-DE-207B-10: Impact of Morphologic Characteristics On Radiomics Features From Contast-Enhanced CT for Primary Lung Tumors". United States. doi:10.1118/1.4957259.
@article{osti_22649570,
title = {MO-DE-207B-10: Impact of Morphologic Characteristics On Radiomics Features From Contast-Enhanced CT for Primary Lung Tumors},
author = {Fried, D and Zhang, L and Fave, X and Ibbott, G and Zhou, S and Mawlawi, O and Liao, Z and Court, L},
abstractNote = {Purpose: Determine the impact of morphologic characteristics (e.g. necrosis, vascular enhancement, and cavitation) on radiomic features from contrast enhanced CT (CE-CT) in primary lung tumors. Methods: We developed an auto-segmentation algorithm to separate lung tumors on contrast-enhanced CT into cavitation (air), necrosis, tissue, and enhancing vessels using a combination of thresholding and region-growing. An auto-segmentation algorithm was also designed to identify necrosis on FDG-PET scans. Wilcoxon rank-sum tests were used to determine if significant differences existed in radiomics features (histogram-uniformity and Laplacian-of-Gaussian average) from 249 patients, found to prognostic in previous work, based on the presence/absence of morphologic features. Feature values were also compared between the original tumor contours and contours excluding a specific morphologic feature. Comparison of necrosis segmentation on CE-CT versus FDG-PET was performed in 78 patients to assess for agreement using the concordance correlation coefficient (CCC). Results: Tumors with cavitation and enhancing vasculature had lower uniformity values (p = 0.001 and p = 0.03, respectively). Tumors with enhancing vasculature and necrosis had higher Laplacian-of-Gaussian average values (measure of “edges” within the tumor) (p < 0.001). Removing these tissue types from regions-of-interest did not drastically alter either radiomic feature value (all scenarios had R{sup 2} > 0.8). This suggests there may be interactions between morphologic characteristics and the radiomic feature value of tumor tissue. Comparison of necrosis volume and percent necrosis volume of tumor were found to have CCC values of 0.85 and 0.76, respectively between CE-CT and FDG-PET segmentation methods. Conclusions: Tumors with enhancing vasculature, necrosis, and cavitation have higher radiomic feature values that are associated with poor prognosis than tumors without these features. Removing these tissue types from quantitative assessment did not drastically impact radiomic feature values. High reproducibility of CE-CT segmented necrosis compared to FDG-PET segmented necrosis provides a reasonable validation of segmentation accuracy on CE-CT.},
doi = {10.1118/1.4957259},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To determine how radiomics features change during radiation therapy and whether those changes (delta-radiomics features) can improve prognostic models built with clinical factors. Methods: 62 radiomics features, including histogram, co-occurrence, run-length, gray-tone difference, and shape features, were calculated from pretreatment and weekly intra-treatment CTs for 107 stage III NSCLC patients (5–9 images per patient). Image preprocessing for each feature was determined using the set of pretreatment images: bit-depth resample and/or a smoothing filter were tested for their impact on volume-correlation and significance of each feature in univariate cox regression models to maximize their information content. Next, the optimized featuresmore » were calculated from the intratreatment images and tested in linear mixed-effects models to determine which features changed significantly with dose-fraction. The slopes in these significant features were defined as delta-radiomics features. To test their prognostic potential multivariate cox regression models were fitted, first using only clinical features and then clinical+delta-radiomics features for overall-survival, local-recurrence, and distant-metastases. Leave-one-out cross validation was used for model-fitting and patient predictions. Concordance indices(c-index) and p-values for the log-rank test with patients stratified at the median were calculated. Results: Approximately one-half of the 62 optimized features required no preprocessing, one-fourth required smoothing, and one-fourth required smoothing and resampling. From these, 54 changed significantly during treatment. For overall-survival, the c-index improved from 0.52 for clinical factors alone to 0.62 for clinical+delta-radiomics features. For distant-metastases, the c-index improved from 0.53 to 0.58, while for local-recurrence it did not improve. Patient stratification significantly improved (p-value<0.05) for overallsurvival and distant-metastases when delta-radiomics features were included. The delta-radiomics versions of autocorrelation, kurtosis, and compactness were selected most frequently in leave-one-out iterations. Conclusion: Weekly changes in radiomics features can potentially be used to evaluate treatment response and predict patient outcomes. High-risk patients could be recommended for dose escalation or consolidation chemotherapy. This project was funded in part by grants from the National Cancer Institute (NCI) and the Cancer Prevention Research Institute of Texas (CPRIT).« less
  • Purpose: To investigate the impact of reconstruction Field of View on Radiomics features in computed tomography (CT) using a texture phantom. Methods: A rectangular Credence Cartridge Radiomics (CCR) phantom, composed of 10 different cartridges, was scanned on four different CT scanners from two manufacturers. A pre-defined scanning protocol was adopted for consistency. The slice thickness and reconstruction interval of 1.5 mm was used on all scanners. The reconstruction FOV was varied to result a voxel size ranging from 0.38 to 0.98 mm. A spherical region of interest (ROI) was contoured on the shredded rubber cartridge from CCR phantom CT scans.more » Ninety three Radiomics features were extracted from ROI using an in-house program. These include 10 shape, 22 intensity, 26 GLCM, 11 GLZSM, 11 RLM, 5 NGTDM and 8 fractal dimensional features. To evaluate the Interscanner variability across three scanners, a coefficient of variation (COV) was calculated for each feature group. Each group was further classified according to the COV by calculating the percentage of features in each of the following categories: COV≤ 5%, between 5 and 10% and ≥ 10%. Results: Shape features were the most robust, as expected, because of the spherical contouring of ROI. Intensity features were the second most robust with 54.5 to 64% of features with COV < 5%. GLCM features ranged from 31 to 35% for the same category. RLM features were sensitive to specific scanner and 5% variability was 9 to 54%. Almost all GLZM and NGTDM features showed COV ≥10% among the scanners. The dependence of fractal dimensions features on FOV was not consistent across different scanners. Conclusion: We concluded that reconstruction FOV greatly influence Radiomics features. The GLZSM and NGTDM are highly sensitive to FOV. funded in part by Grant NIH/NCI R01CA190105-01.« less
  • Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for eachmore » lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical management.« less
  • Purpose: Use a NEMA-IEC PET phantom to assess the robustness of FDG-PET-based radiomics features to changes in reconstruction parameters across different scanners. Methods: We scanned a NEMA-IEC PET phantom on 3 different scanners (GE Discovery VCT, GE Discovery 710, and Siemens mCT) using a FDG source-to-background ratio of 10:1. Images were retrospectively reconstructed using different iterations (2–3), subsets (21–24), Gaussian filter widths (2, 4, 6mm), and matrix sizes (128,192,256). The 710 and mCT used time-of-flight and point-spread-functions in reconstruction. The axial-image through the center of the 6 active spheres was used for analysis. A region-of-interest containing all spheres was ablemore » to simulate a heterogeneous lesion due to partial volume effects. Maximum voxel deviations from all retrospectively reconstructed images (18 per scanner) was compared to our standard clinical protocol. PET Images from 195 non-small cell lung cancer patients were used to compare feature variation. The ratio of a feature’s standard deviation from the patient cohort versus the phantom images was calculated to assess for feature robustness. Results: Across all images, the percentage of voxels differing by <1SUV and <2SUV ranged from 61–92% and 88–99%, respectively. Voxel-voxel similarity decreased when using higher resolution image matrices (192/256 versus 128) and was comparable across scanners. Taking the ratio of patient and phantom feature standard deviation was able to identify features that were not robust to changes in reconstruction parameters (e.g. co-occurrence correlation). Metrics found to be reasonably robust (standard deviation ratios > 3) were observed for routinely used SUV metrics (e.g. SUVmean and SUVmax) as well as some radiomics features (e.g. co-occurrence contrast, co-occurrence energy, standard deviation, and uniformity). Similar standard deviation ratios were observed across scanners. Conclusions: Our method enabled a comparison of feature variability across scanners and was able to identify features that were not robust to changes in reconstruction parameters.« less
  • Purpose: The goal of this study was to evaluate the repeatability of radiomics features (intensity, shape and heterogeneity) in both PET and low-dose CT components of test-retest FDG-PET/CT images in a prospective multicenter cohort of 74 NSCLC patients from ACRIN 6678 and a similar Merck trial. Methods: Seventy-four patients with stage III-IV NCSLC were prospectively included. The primary tumor and up to 3 additional lesions per patient were analyzed. The Fuzzy Locally Adaptive Bayesian algorithm was used to automatically delineate metabolically active volume (MAV) in PET. The 3D SlicerTM software was exploited to delineate anatomical volumes (AV) in CT. Tenmore » intensity first-order features, as well as 26 textural features and four 3D shape descriptors were calculated from tumour volumes in both modalities. The repeatability of each metric was assessed by Bland-Altman analysis. Results: One hundred and five lesions (primary tumors and nodal or distant metastases) were delineated and characterized. The MAV and AV determination had a repeatability of −1.4±11.0% and −1.2±18.7% respectively. Several shape and heterogeneity features were found to be highly or moderately repeatable (e.g., sphericity, co-occurrence entropy or intensity size-zone matrix zone percentage), whereas others were confirmed as unreliable with much higher variability (more than twice that of the corresponding volume determination). Conclusion: Our results in this large multicenter cohort with more than 100 measurements confirm the PET findings in previous studies (with <30 lesions). In addition, our study is the first to explore the repeatability of radiomics features in the low-dose CT component of PET/CT acquisitions (previous studies considered dosimetry CT, CE-CT or CBCT). Several features were identified as reliable in both PET and CT components and could be used to build prognostic models. This work has received a French government support granted to the CominLabs excellence laboratory and managed by the National Research Agency in the “Investing for the Future” program under reference ANR-10-LABX-07-01, and support from the city of Brest.« less