skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-AB-204-00: Interoperability in Radiation Oncology: IHE-RO Committee Update

Abstract

You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standards like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role inmore » improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity.« less

Publication Date:
OSTI Identifier:
22649478
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTER CODES; EQUIPMENT; NEOPLASMS; NORTH AMERICA; RADIOTHERAPY

Citation Formats

NONE. MO-AB-204-00: Interoperability in Radiation Oncology: IHE-RO Committee Update. United States: N. p., 2016. Web. doi:10.1118/1.4957142.
NONE. MO-AB-204-00: Interoperability in Radiation Oncology: IHE-RO Committee Update. United States. doi:10.1118/1.4957142.
NONE. 2016. "MO-AB-204-00: Interoperability in Radiation Oncology: IHE-RO Committee Update". United States. doi:10.1118/1.4957142.
@article{osti_22649478,
title = {MO-AB-204-00: Interoperability in Radiation Oncology: IHE-RO Committee Update},
author = {NONE},
abstractNote = {You’ve experienced the frustration: vendor A’s device claims to work with vendor B’s device, but the practice doesn’t match the promise. Getting devices working together is the hidden art that Radiology and Radiation Oncology staff have to master. To assist with that difficult process, the Integrating the Healthcare Enterprise (IHE) effort was established in 1998, with the coordination of the Radiological Society of North America. Integrating the Healthcare Enterprise (IHE) is a consortium of healthcare professionals and industry partners focused on improving the way computer systems interconnect and exchange information. This is done by coordinating the use of published standards like DICOM and HL7. Several clinical and operational IHE domains exist in the healthcare arena, including Radiology and Radiation Oncology. The ASTRO-sponsored IHE Radiation Oncology (IHE-RO) domain focuses on radiation oncology specific information exchange. This session will explore the IHE Radiology and IHE RO process for; IHE solicitation process for new profiles. Improving the way computer systems interconnect and exchange information in the healthcare enterprise Supporting interconnectivity descriptions and proof of adherence by vendors Testing and assuring the vendor solutions to connectivity problems. Including IHE profiles in RFPs for future software and hardware purchases. Learning Objectives: Understand IHE role in improving interoperability in health care. Understand process of profile development and implantation. Understand how vendors prove adherence to IHE RO profiles. S. Hadley, ASTRO Supported Activity.},
doi = {10.1118/1.4957142},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • The Program for Particle Therapy proposes utilization of hospital-based particle generators in a nationwide program to evaluate, through meaningful clinical trials, article radiation therapy and the impact its utilization can have in cancer care. The scientific rationale for use of particle therapy compared to conventional radiation in the effort to achieve uncomplicated local control of cancer, to heal, cure and palliate the patient, indicates the advantages of particle therapy consist of either or both (a) enhanced biological effect and (b) physical properties leading to improvement in dose distribution. Any new modality enabling the therapist to increase dose to tumor, whilemore » sparing critical normal tissue, can enhance local control and benefit systemic therapy. Limited clinical trials to date warrant further definitive clinical study of particle beams. Physical and biologic considerations of fast-neutron beams have been essentially completed; equipment design, availability, and predicted reliability are good; and the medical community has indicated support of further study. A major clinical investigation can be implemented to provide the scientific basis for judging clinical merit of use of high LET radiations. Concurrently, the first phase of work can be started with protons, negative pions, and heavy ions. It is anticipated that clinical results will accrue much more rapidly with hospital-based facilities in two phases, over a 10-year period.« less
  • Radiation control and safety are major considerations for nursing personnel during the care of patients receiving brachytherapy. Since the theory and practice of radiation applications are not part of the routine curriculum of nursing programs, the education of nurses and other health care professionals in radiation safety procedures is important. Regulatory agencies recommend that an annual safety course be given to all persons frequenting, using, or associated with patients containing radioactive materials. This article presents pertinent aspects of the principles and procedures of radiation safety, the role of personnel dose-monitoring devices, and the value of additional radiation control features, suchmore » as a lead cubicle, during interstitial brain implants. One institution's protocol and procedures for the care of high-intensity iridium-192 brain implants are discussed. Preoperative teaching guidelines and nursing interventions included in the protocol focus on radiation control principles.« less
  • Purpose: NRG Oncology RTOG 0319 was the first cooperative group trial in the United States to evaluate 3-dimensional conformal radiation therapy (3D-CRT) accelerated partial breast irradiation (APBI). This report updates secondary endpoints of toxicity and efficacy. Methods and Materials: Patients with stage I or II invasive breast cancer (tumor size ≤3 cm, ≤3 positive lymph nodes, negative margins) were eligible for 3D-CRT APBI: 38.5 Gy in 10 twice-daily fractions. Patient characteristics and treatment details have previously been reported. Adverse events were graded with CTCAE v3.0 (National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0). This analysis updates the rates of ipsilateral breastmore » recurrence (IBR), contralateral breast recurrence, ipsilateral node recurrence (INR), metastatic sites (distant metastases [DM]), mastectomy, disease-free survival, mastectomy-free survival, and overall survival. Results: Of 58 enrolled patients, 52 were eligible, with a median age of 61 years; 94% had stage I cancer and 83% had estrogen receptor positive disease. The median follow-up period was 8 years (minimum-maximum, 1.7-9.0 years). The 7-year estimate of isolated IBR (no DM) was 5.9%. The 7-year estimates of all IBRs, INR, mastectomy rate, and DM were 7.7%, 5.8%, 7.7%, and 7.7%, respectively. All 4 IBRs were invasive, of which 3 had a component within the planning target volume. The patterns of failure were as follows: 3 IBRs, 1 INR, 2 DM, 1 INR plus DM, and 1 IBR plus INR plus DM. The 7-year estimates of mastectomy-free survival, disease-free survival, and overall survival were 71.2%, 71.2%, and 78.8%, respectively. Thirteen patients died: 3 of breast cancer and 10 of other causes. Grade 3 (G3) treatment-related adverse events were reported by 4 patients (7.7%). No G3 pain or pulmonary or cardiac toxicities were reported. Conclusions: This phase 1 and 2 trial of 3D-CRT APBI continues to show durable tumor control and minimal G3 toxicity, comparable to other APBI techniques. Mature phase 3 results will determine the appropriateness and limitations of this noninvasive APBI technique.« less
  • Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) inmore » 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.« less
  • Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educatorsmore » whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.« less