skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images

Abstract

Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI was acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstructionmore » was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.« less

Authors:
; ;  [1]
  1. UCLA School of Medicine, Los Angeles, CA (United States)
Publication Date:
OSTI Identifier:
22649380
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BRACHYTHERAPY; COBALT 60; COMPUTER CODES; COMPUTERIZED TOMOGRAPHY; FEASIBILITY STUDIES; IMAGES; INTERSTITIALS; NMR IMAGING; PHANTOMS; PROSTATE; RADIATION DOSE DISTRIBUTIONS

Citation Formats

Park, S, Kamrava, M, and Yang, Y. SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images. United States: N. p., 2016. Web. doi:10.1118/1.4957034.
Park, S, Kamrava, M, & Yang, Y. SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images. United States. doi:10.1118/1.4957034.
Park, S, Kamrava, M, and Yang, Y. Wed . "SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images". United States. doi:10.1118/1.4957034.
@article{osti_22649380,
title = {SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images},
author = {Park, S and Kamrava, M and Yang, Y},
abstractNote = {Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI was acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstruction was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.},
doi = {10.1118/1.4957034},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: Evaluate a large-field MRI phantom for assessment of geometric distortion in whole-body MRI for real-time MR guided radiation therapy. Methods: A prototype CIRS large-field MRI distortion phantom consisting of a PMMA cylinder (33 cm diameter, 30 cm length) containing a 3D-printed orthogonal grid (3 mm diameter rods, 20 mm apart), was filled with 6 mM NiCl{sub 2} and 30 mM NaCl solution. The phantom was scanned at 1.5T and 3.0T on a GE HDxt and Discovery MR750, respectively, and at 0.35T on a ViewRay system. Scans were obtained with and without 3D distortion correction to demonstrate the impact ofmore » such corrections. CT images were used as a reference standard for analysis of geometric distortion, as determined by a fully automated gradient-search method developed in Matlab. Results: 1,116 grid points distributed throughout a cylindrical volume 28 cm in diameter and 16 cm in length were identified and analyzed. With 3D distortion correction, average/maximum displacements for the 1.5, 3.0, and 0.35T systems were 0.84/2.91, 1.00/2.97, and 0.95/2.37 mm, respectively. The percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (73%, 92%, 97%), (54%, 85%, 97%), and (55%, 90%, 99%), respectively. A reduced scan volume of 20 × 20 × 10 cm{sup 3} (representative of a head and neck scan volume) consisting of 420 points was also analyzed. In this volume, the percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (90%, 99%, 100%), (63%, 95%, 100%), and (75%, 96%, 100%), respectively. Without 3D distortion correction, average/maximum displacements were 1.35/3.67, 1.67/4.46, and 1.51/3.89 mm, respectively. Conclusion: The prototype large-field MRI distortion phantom and developed software provide a thorough assessment of 3D spatial distortions in MRI. The distortions measured were acceptable for RT applications, both for the high field strengths and the system configuration developed by ViewRay.« less
  • Purpose: In prostate HDR brachytherapy dose distributions are highly sensitive to changes in prostate volume and catheter displacements. We investigate the maximum deformations in implant geometry before planning objectives are violated. Methods: A typical prostate Ir-192 HDR brachytherapy reference plan was calculated on the Oncentra planning system, which used CT images from a tissue equivalent prostate phantom (CIRS Model 053S) embedded inside a pelvis wax phantom. The prostate was deformed and catheters were displaced in simulations using a code written in MATLAB. For each deformation dose distributions were calculated, based on TG43 methods, using the MATLAB code. The calculations weremore » validated through comparison with Oncentra calculations for the reference plan, and agreed within 0.12%SD and 0.3%SD for dose and volume, respectively. Isotropic prostate volume deformations of up to +34% to −27% relative to its original volume, and longitudinal catheter displacements of 7.5 mm in superior and inferior directions were simulated. Planning objectives were based on American Brachytherapy Society guidelines for prostate and urethra volumes. A plan violated the planning objectives when less than 90% of the prostate volume received the prescribed dose or higher (V{sub 100}), or the urethral volume receiving 125% of prescribed dose or higher was more than 1 cc (U{sub 125}). Lastly, the dose homogeneity index (DHI=1-V{sub 150}/V{sub 100}) was evaluated; a plan was considered sub-optimal when the DHI fell below 0.62. Results and Conclusion: Planning objectives were violated when the prostate expanded by 10.7±0.5% or contracted by 11.0±0.2%; objectives were also violated when catheters were displaced by 4.15±0.15 mm and 3.70±0.15 mm in the superior and inferior directions, respectively. The DHI changes did not affect the plan optimality, except in the case of prostate compression. In general, catheter displacements have a significantly larger impact on plan optimality than prostate volume changes.« less
  • Purpose: This study aims at developing an MRI-only workflow for post-implant dosimetry of the prostate LDR brachytherapy seeds. The specific goal here is to develop a post-processing algorithm to produce positive contrast for the seeds and prostatic calcifications and differentiate between them on MR images. Methods: An agar-based phantom incorporating four dummy seeds (I-125) and five calcifications of different sizes (from sheep cortical bone) was constructed. Seeds were placed arbitrarily in the coronal plane. The phantom was scanned with 3T Philips Achieva MR scanner using an 8-channel head coil array. Multi-echo turbo spin echo (ME-TSE) and multi-echo gradient recalled echomore » (ME-GRE) sequences were acquired. Due to minimal susceptibility artifacts around seeds, ME-GRE sequence (flip angle=15; TR/TE=20/2.3/2.3; resolution=0.7×0.7×2mm3) was further processed.The induced field inhomogeneity due to the presence of titaniumencapsulated seeds was corrected using a B0 field map. B0 map was calculated using the ME-GRE sequence by calculating the phase difference at two different echo times. Initially, the product of the first echo and B0 map was calculated. The features corresponding to the seeds were then extracted in three steps: 1) the edge pixels were isolated using “Prewitt” operator; 2) the Hough transform was employed to detect ellipses approximately matching the dimensions of the seeds and 3) at the position and orientation of the detected ellipses an ellipse was drawn on the B0-corrected image. Results: The proposed B0-correction process produced positive contrast for the seeds and calcifications. The Hough transform based on Prewitt edge operator successfully identified all the seeds according to their ellipsoidal shape and dimensions in the edge image. Conclusion: The proposed post-processing algorithm successfully visualized the seeds and calcifications with positive contrast and differentiates between them according to their shapes. Further assessments on more realistic phantoms and patient study are required to validate the outcome.« less
  • Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curvedmore » surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high level of positioning accuracy. Implementation of this technique has potential to decrease the planning time and may improve overall quality in superficial brachytherapy.« less
  • Purpose: It is always a challenge to reconstruct the interstitial catheter for high dose rate (HDR) brachytherapy on patient CT or MR images. This work aims to investigate the feasibility of using the Calypso system (Varian Medical, CA) for HDR catheter reconstruction utilizing its accuracy on tracking the electromagnetic transponder location. Methods: Experiment was done with a phantom that has a HDR interstitial catheter embedded inside. CT scan with a slice thickness of 1.25 mm was taken for this phantom with two Calypso beacon transponders in the catheter. The two transponders were connected with a wire. The Calypso system wasmore » used to record the beacon transponders’ location in real time when they were gently pulled out with the wire. The initial locations of the beacon transponders were used for registration with the CT image and the detected transponder locations were used for the catheter path reconstruction. The reconstructed catheter path was validated on the CT image. Results: The HDR interstitial catheter was successfully reconstructed based on the transponders’ coordinates recorded by the Calypso system in real time when the transponders were pulled in the catheter. After registration with the CT image, the shape and location of the reconstructed catheter are evaluated against the CT image and the result shows an accuracy of 2 mm anywhere in the Calypso detectable region which is within a 10 cm X 10 cm X 10 cm cubic box for the current system. Conclusion: It is feasible to use the Calypso system for HDR interstitial catheter reconstruction. The obstacle for its clinical usage is the size of the beacon transponder whose diameter is bigger than most of the interstitial catheters used in clinic. Developing smaller transponders and supporting software and hardware for this application is necessary before it can be adopted for clinical use.« less