skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-674: In Vitro Study of 5-Aminolevulinic Acid-Mediated Photo Dynamic Therapy in Human Cancer Cell Lines

Abstract

Purpose: Photodynamic therapy (PTD) is a promising cancer treatment modality. 5-sminolevulinic acid (ALA) is a clinically approved photosensitizer. Here we studied the effect of 5-ALA administration with irradiation on several cell lines in vitro. Methods: Human head and neck (FaDu), lung (A549) and prostate (LNCaP) cancer cells (104/well) were seeded overnight in 96-well plates (Figure 1). 5-ALA at a range from 0.1 to 30.0mg/ml was added to confluent cells 3h before irradiation in 100ul of culture medium. 15MV photon beams from a Siemens Artiste linear accelerator were used to deliver 2 Gy dose in one fraction to the cells. Cell viability was evaluated by WST1 assay. The development of orange color was measured 3h after the addition of WST-1 reagent at 450nm on an Envision Multilabel Reader (Figure 2) and directly correlated to cell number. Control, untreated cells were incubated without 5-ALA. The experiment was performed twice for each cell line. Results: The cell viability rates for the head and neck cancer line are shown in Figure 3. FaDu cell viability was reduced significantly to 36.5% (5-ALA) and 18.1% (5-ALA + RT) only at the highest concentration of 5-ALA, 30mg/ml. This effect was observed in neither A549, nor LNCaP cellmore » line. No toxicity was detected at lower 5-ALA concentrations. Conclusion: Application of 5-ALA and subsequent PDT was found to be cytotoxic at the highest dose of the photosensitizer used in the FaDu head and neck cell line, and their effect was synergistic. Further efforts are necessary to study the potential therapeutic effects of 5-ALA PTD in vitro and in vivo. Our results suggest 5-ALA may improve the efficacy of radiotherapy by acting as a radiomediator in head and neck cancer.« less

Authors:
; ; ;  [1]
  1. Fox Chase Cancer Center, Philadelphia, PA (United States)
Publication Date:
OSTI Identifier:
22649229
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; CULTURE MEDIA; HEAD; IN VITRO; LINEAR ACCELERATORS; NECK; NEOPLASMS; PHOTON BEAMS; RADIOTHERAPY; VIABILITY

Citation Formats

Cvetkovic, D, Wang, B, Gupta, R, and Ma, C. SU-F-T-674: In Vitro Study of 5-Aminolevulinic Acid-Mediated Photo Dynamic Therapy in Human Cancer Cell Lines. United States: N. p., 2016. Web. doi:10.1118/1.4956860.
Cvetkovic, D, Wang, B, Gupta, R, & Ma, C. SU-F-T-674: In Vitro Study of 5-Aminolevulinic Acid-Mediated Photo Dynamic Therapy in Human Cancer Cell Lines. United States. doi:10.1118/1.4956860.
Cvetkovic, D, Wang, B, Gupta, R, and Ma, C. Wed . "SU-F-T-674: In Vitro Study of 5-Aminolevulinic Acid-Mediated Photo Dynamic Therapy in Human Cancer Cell Lines". United States. doi:10.1118/1.4956860.
@article{osti_22649229,
title = {SU-F-T-674: In Vitro Study of 5-Aminolevulinic Acid-Mediated Photo Dynamic Therapy in Human Cancer Cell Lines},
author = {Cvetkovic, D and Wang, B and Gupta, R and Ma, C},
abstractNote = {Purpose: Photodynamic therapy (PTD) is a promising cancer treatment modality. 5-sminolevulinic acid (ALA) is a clinically approved photosensitizer. Here we studied the effect of 5-ALA administration with irradiation on several cell lines in vitro. Methods: Human head and neck (FaDu), lung (A549) and prostate (LNCaP) cancer cells (104/well) were seeded overnight in 96-well plates (Figure 1). 5-ALA at a range from 0.1 to 30.0mg/ml was added to confluent cells 3h before irradiation in 100ul of culture medium. 15MV photon beams from a Siemens Artiste linear accelerator were used to deliver 2 Gy dose in one fraction to the cells. Cell viability was evaluated by WST1 assay. The development of orange color was measured 3h after the addition of WST-1 reagent at 450nm on an Envision Multilabel Reader (Figure 2) and directly correlated to cell number. Control, untreated cells were incubated without 5-ALA. The experiment was performed twice for each cell line. Results: The cell viability rates for the head and neck cancer line are shown in Figure 3. FaDu cell viability was reduced significantly to 36.5% (5-ALA) and 18.1% (5-ALA + RT) only at the highest concentration of 5-ALA, 30mg/ml. This effect was observed in neither A549, nor LNCaP cell line. No toxicity was detected at lower 5-ALA concentrations. Conclusion: Application of 5-ALA and subsequent PDT was found to be cytotoxic at the highest dose of the photosensitizer used in the FaDu head and neck cell line, and their effect was synergistic. Further efforts are necessary to study the potential therapeutic effects of 5-ALA PTD in vitro and in vivo. Our results suggest 5-ALA may improve the efficacy of radiotherapy by acting as a radiomediator in head and neck cancer.},
doi = {10.1118/1.4956860},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: It has recently been shown that non-thermal pulsed high intensity focused ultrasound (pHIFU) has a cell-killing effect. The purpose of the study is to investigate the sonosensitizing effect of 5-Aminolevulinic Acid (5-ALA) in non-thermal pHIFU cancer therapy. Methods: FaDu human head and neck squamous cell carcinoma cells were injected subcutaneously in the flanks of nude mice. After one to two weeks, the tumors reached the volume of 112 ± 8 mm3 and were assigned randomly into a non-thermal pHIFU group (n=9) and a non-thermal sonodynamic therapy (pHIFU after 5-ALA administration) group (n=7). The pHIFU treatments (parameters: 1 MHz frequency;more » 25 W acoustic power; 0.1 duty cycle; 60 seconds duration) were delivered using an InSightec ExAblate 2000 system with a GE Signa 1.5T MR scanner. The mice in the non-thermal sonodynamic group received 5-ALA tail-vein injection 4 hours prior to the pHIFU treatment. The tumor growth was monitored using the CT scanner on a Sofie-Biosciences G8 PET/CT system. Results: The tumors in this study grew very aggressively and about 60% of the tumors in this study developed ulcerations at various stages. Tumor growth delay after treatments was observed by comparing the treated (n=9 in pHIFU group; n=7 in sonodynamic group) and untreated tumors (n=17). However, no statistically significant differences were found between the non-thermal pHIFU and non-thermal sonodynamic group. The mean normalized tumor volume of the untreated tumors on Day 7 after their first CT scans was 7.05 ± 0.54, while the normalized volume of the treated tumors on Day 7 after treatment was 5.89 ± 0.79 and 6.27 ± 0.47 for the sonodynamic group and pHIFU group, respectively. Conclusion: In this study, no significant sonosensitizing effects of 5-ALA were obtained on aggressive FaDu tumors despite apparent tumor growth delay in some mice treated with non-thermal sonodynamic therapy.« less
  • Purpose: To compare and analyze the characteristics of intensity-modulated arc therapy(IMAT) versus fixed-gantry intensity-modulated radiotherapy(IMRT) in treatment of non-small-cell lung cancer. Methods: Twelve patients treated in our radiotherapy center were selected for this study. The patient subsequently underwent 4D-CT simulation.Margins of 5mm and 10mm were added to the ITV to generate the CTV and PTV respectively. Three treatment plans (IMRT,one single arc (RA1),double arcs (RA2))were generated with Eclipse ver.8.6 planning systems. Using a dose level of 75Gy in 15fractions to the ITV,60Gy in 15fractions to the CTV and 45Gy in 15fractions to the PTV respectively. The target and normol tissuemore » volumes were compared,as were the dosimetry parameters. Results: There were no significant differences in CI of ITV,PTV,HI of ITV,CTV and PTV, V5,V10,V15,V20,V25,V30,V45,V50 of total-lung and mean lung dose (all p>0.05). However, the differences were significant in terms of CI of CTV,V5 of B-P (all p<0.05). On the MU, IMRT=1540MU,RA1=1006 MU and RA2=1096 MU. (F=12.00,P=0.000).On the treatment time, IMRT= 13.5min,RA1= 1.5min,and RA2=2.5 min (F= 30.11,P=0.000 ). Conclusion: IMAT is equal to IMRT in dosimetril evaluation. Due to much less Mu and delivery time,IMAT is an ideal technique in treating patients by reduceing the uncomfortable influnce which could effect the treatment.« less
  • Purpose: Radio-dynamic therapy (RDT) is a potentially effective modality for local and systemic cancer treatment. Using RDT, the administration of a radio-sensitizer enhances the biological effect of high-energy photons. Although the sensitizer uptake ratio of tumor to normal tissue is normally high, one cannot simply neglect its effect on critical structures. In this study, we aim to explore planning strategies to improve bone marrow sparing without compromising the plan quality for RDT treatment of pelvic cancers. Methods: Ten cervical and ten prostate cancer patients who previously received radiotherapy at our institution were selected for this study. For each patient, ninemore » plans were created using the Varian Eclipse treatmentplanning-system (TPS) with 3D-CRT, IMRT, and VMAT delivery techniques containing various gantry angle combinations and optimization parameters (dose constraints to the bone marrow). To evaluate the plans for bone marrow sparing, the dose-volume parameters V5, V10, V15, V20, V30, and V40 for bone marrow were examined. Effective doseenhancement factors for the sensitizer were used to weigh the dose-volume histograms for various tissues from individual fractions. Results: The planning strategies had different impacts on bone marrow sparing for the cervical and prostate cases. For the cervical cases, provided the bone marrow constraints were properly set during optimization, the dose to bone marrow sparing was found to be comparable between different IMRT and VMAT plans regardless of the gantry angle selection. For the prostate cases, however, careful selection of gantry angles could dramatically improve the bone marrow sparing, although the dose distribution in bone marrow was clinically acceptable for all prostate plans that we created. Conclusion: For intensity-modulated RDT planning for cervical cancer, planners should set bone marrow constraints properly to avoid any adverse damage, while for prostate cancer one can carefully select gantry angles to improve bone marrow sparing when necessary.« less
  • Purpose: Recent clinical studies have shown a correlation between radiation dose to the thoracic vertebral bodies (TVB) and the development of hematologic toxicity (HT) in patients receiving chemoradiation (CRT) for lung cancer (LuCa). The feasibility of a bone-marrow sparing (BMS) approach in this group of patients is unknown. We hypothesized that radiation dose to the TVB can be reduced with an intensity modulated radiation therapy(IMRT)/volumetric modulated arc radiotherapy(VMAT) without affecting plan quality. Methods: We identified LuCa cases treated with curative intent CRT using IMRT/VMAT from 4/2009 to 2/2015. The TVBs from T1–T10 were retrospectively contoured. No constraints were placed onmore » the TVB structure initially. A subset were re-planned with BMS-IMRT/VMAT with an objective or reducing the mean TVB dose to <23 Gy. The following data were collected on the initial and BMS plans: mean dose to planning target volume (PTV), lungs-PTV, esophagus, heart; lung V20; cord max dose. Pairwise comparisons were performed using the signed rank test. Results: 94 cases received CRT with IMRT/VMAT. We selected 11 cases (7 IMRT, 4 VMAT) with a range of initial mean TVB doses (median 35.7 Gy, range 18.9–41.4 Gy). Median prescription dose was 60 Gy. BMS-IMRT/VMAT significantly reduced the mean TVB dose by a median of 10.2 Gy (range, 1.0–16.7 Gy, p=0.001) and reduced the cord max dose by 2.9 Gy (p=0.014). BMS-IMRT/VMAT had no impact on lung mean (median +17 cGy, p=0.700), lung V20 (median +0.5%, p=0.898), esophagus mean (median +13 cGy, p=1.000) or heart mean (median +16 cGy, p=0.365). PTV-mean dose was not affected by BMS-IMRT/VMAT (median +13 cGy, p=0.653). Conclusion: BMS-IMRT/VMAT was able to significantly reduce radiation dose to the TVB without compromising plan quality. Prospective evaluation of BMS-IMRT/VMAT in patients receiving CRT for LuCa is warranted to determine if this approach results in clinically significant reductions in HT.« less
  • The in vitro response to radiation and chemotherapeutic drugs of cell lines established from 7 patients with small cell (SC) lung cancer were tested using a soft agarose clonogenic assay. Five cell lines retained the typical morphological and biochemical amine precursor uptake decarboxylation characteristics of SC, while two cell lines had undergone ''transformation'' to large cell (LC) morphological variants with loss of amine precursor uptake decarboxylation cell characteristics of SC. The radiation survival curves for the SC lines were characterized by D0 values ranging from 51 to 140 rads and extrapolation values (n) ranging from 1.0 to 3.3. While themore » D0 values of the radiation survival curves of the LC variants were similar (91 and 80 rads), the extrapolation values were 5.6 and 11.1 In vitro chemosensitivity testing of the cell lines revealed an excellent correlation between prior treatment status of the patient and in vitro sensitivity or resistance. No correlation was observed between in vitro chemosensitivity and radiation response. These data suggest that transformation of SC to LC with loss of amine precursor uptake and decarboxylation characteristics is associated with a marked increase in radiation resistance (n) in vitro. The observation of a 2- to 5-fold increase in survival of the LC compared to the SC lines following 200 rads suggests that the use of larger daily radiation fractions and/or radiation-sensitizing drugs might lead to a significantly greater clinical response in patients with LC morphology. This clinical approach may have a major impact on patient response and survival.« less