skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study

Abstract

Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fraction and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion:more » CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less

Authors:
;  [1]
  1. Mercy Health, Saint Mary’s, Grand Rapids, MI (United States)
Publication Date:
OSTI Identifier:
22649119
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; FEASIBILITY STUDIES; FRACTIONATED IRRADIATION; NEOPLASMS; PLANNING; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY

Citation Formats

Bichay, T, and Mayville, A. SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study. United States: N. p., 2016. Web. doi:10.1118/1.4956723.
Bichay, T, & Mayville, A. SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study. United States. doi:10.1118/1.4956723.
Bichay, T, and Mayville, A. Wed . "SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study". United States. doi:10.1118/1.4956723.
@article{osti_22649119,
title = {SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study},
author = {Bichay, T and Mayville, A},
abstractNote = {Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fraction and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.},
doi = {10.1118/1.4956723},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: Performing pre-treatment quality assurance (QA) with the Delta4 system (ScandiDos Inc., Madison, WI) is well established for linac-based radiotherapy. This is not true when using a Cyberknife (Accuray Inc., Sunnyvale, CA) where, typically film-based QA is applied. The goal of this work was to test the feasibility to use the Delta4 system for pre-treatment QA for stereotactic body radiation therapy (SBRT) using a Cyberknife-M6 equipped with the InCise2 multileaf collimator (MLC). Methods: In order to perform measurements without accelerator pulse signal, the Tomotherapy option within the Delta4 software was used. Absolute calibration of the Delta4 phantom was performed usingmore » a 10×10 cm{sup 2} field shaped by the InCise2 MLC of the Cyberknife-M6. Five fiducials were attached to the Delta4 phantom in order to be able to track the phantom before and during measurements. For eight SBRT treatment plans (two liver, two prostate, one lung, three bone metastases) additional verification plans were recalculated on the Delta4 phantom using MultiPlan. Dicom data was exported from MultiPlan and was adapted in order to be compatible with the Delta4 software. The measured and calculated dose distributions were compared using the gamma analysis of the Delta4 system. Results: All eight SBRT plans were successfully measured with the aid of the Delta4 system. In the mean, 98.0±1.9%, 95.8±4.1% and 88.40±11.4% of measured dose points passed the gamma analysis using a global dose deviation criterion of 3% (100% corresponds to the dose maximum) and a distance-to-agreement criterion of 3 mm, 2 mm and 1 mm, respectively, and a threshold of 20%. Conclusion: Pre-treatment QA of SBRT plans using the Delta4 system on a Cyberknife-M6 is feasible. Measured dose distributions of SBRT plans showed clinically acceptable agreement with the corresponding calculated dose distributions.« less
  • Purpose: To investigate the potential use of the Raven™ (LAP of America Laser Applications) for real time AQA of Cyberknife™ with InCise2 MLC (Accuray™ Medical). Methods: At setup, the Raven was rotated 45° on which an Accuray™ AQA cube was positioned. Three different AQA plans for fixed cone, InCise2MLC, and a modified MLC plan were delivered repeatedly ten times. The additional shapes in modified AQA plan enable additional reproducibility checks for all the MLC pairs. During the test, the cube was aligned by imbedded fiducials and irradiated. The two angled radiation beams aimed center tungsten ball of the cube andmore » projected 45° to phosphor screen and registered by a CCD camera of the Raven device. The centricity of the metal ball in the irradiated field was then analyzed using Matlab codes. Results: For AP images, the average offsets of X, Y, and radial directions are 0.24 ± 0.04 mm, 0.25 ± 0.02 mm and 0.35 ±± 0.03 mm respectively for the cone; 0.34 ± 0.02 mm, 0.49 ± 0.04 mm and 0.60 ± 0.04 mm respectively for the MLC. For lateral images, they are 0.63 ± 0.05 mm, 0.11 ± 0.02 mm and 0.64 ± 0.04 mm respectively for the cone, 0.79 ± 0.08 mm, −0.23 ± 0.06 mm and 0.82 ± 0.09 mm respectively for the MLC. No inconsistent MLC shapes were found in the modified AQA group. Conclusion: The results are consistent with clinically acceptable values (≤1mm from baseline). The results suggest the potential of replacement of the standard AQA test with the novel real-time Raven device for Cyberknife daily QA. The modified MLC based AQA provides a more comprehensive MLC daily QA capability. Further improvements in its resolution and automatic analyzing capability are warranted.« less
  • Purpose: MultiPlan, the treatment planning system for the CyberKnife Robotic Radiosurgery system offers two approaches to dose computation, namely Ray-Tracing (RT), the default technique and Monte Carlo (MC), an option. RT is deterministic, however it accounts for primary heterogeneity only. MC on the other hand has an uncertainty associated with the calculation results. The advantage is that in addition, it accounts for heterogeneity effects on the scattered dose. Not all sites will benefit from MC. The goal of this work was to focus on central nervous system (CNS) tumors and compare dosimetrically, treatment plans computed with RT versus MC. Methods:more » Treatment plans were computed using both RT and MC for sites covering (a) the brain (b) C-spine (c) upper T-spine (d) lower T-spine (e) L-spine and (f) sacrum. RT was first used to compute clinically valid treatment plans. Then the same treatment parameters, monitor units, beam weights, etc., were used in the MC algorithm to compute the dose distribution. The plans were then compared for tumor coverage to illustrate the difference if any. All MC calculations were performed at a 1% uncertainty. Results: Using the RT technique, the tumor coverage for the brain, C-spine (C3–C7), upper T-spine (T4–T6), lower T-spine (T10), Lspine (L2) and sacrum were 96.8%, 93.1%, 97.2%, 87.3%, 91.1%, and 95.3%. The corresponding tumor coverage based on the MC approach was 98.2%, 95.3%, 87.55%, 88.2%, 92.5%, and 95.3%. It should be noted that the acceptable planning target coverage for our clinical practice is >95%. The coverage can be compromised for spine tumors to spare normal tissues such as the spinal cord. Conclusion: For treatment planning involving the CNS, RT and MC appear to be similar for most sites but for the T-spine area where most of the beams traverse lung tissue. In this case, MC is highly recommended.« less
  • Purpose: In proton radiation therapy of posterior fossa tumors, to spare other sensitive structures, the preferred beam geometry results in placing the treatment field distal edge within or just beyond the brainstem, including in at least partially in the treatment volume. Concerns for brainstem toxicity are increased and a controversy exists as to weather the beam’s distal edge should be placed within the brainstem or beyond it, to avoid elevated linear energy transfer (LET) and relative biological effectiveness (RBE) within the brainstem. The dosimetric efficacy of these techniques was examined, accounting for LET- and dose-dependent variable RBE distributions. Methods: Threemore » treatment planning techniques were applied in six ependymoma cases: (a) three-field dose-sparing, with beams’ distal edge within the brainstem; (b) three-field LET-sparing, using same beam directions as (a) but extended field ranges beyond the brainstem; (c) two-posterior-oblique LET-sparing, with extended ranges as (b). Monte Carlo calculated dose, LET and RBE-weighted dose distributions were compared. Results: Lower LET values in the brainstem were accompanied by higher median dose: 53.7 Gy[RBE] and 54.3 Gy[RBE] for techniques (b) and (c) versus 52.1 Gy[RBE] for (a). Accounting for variable RBE, a 15% increase of the brainstem volume receiving at least 60 Gy[RBE] was observed for technique (c) versus (a). Maximum variable-RBE-weighted brainstem dose was comparable for all techniques. Conclusion: Extending the treatment beam range beyond the brainstem, significantly increased its volume receiving high dose radiation, even when accounting for the decreased LET values. The dosimetric benefits of techniques limiting the brainstem dose may outweigh the impact of LET reduction achieved through this technique, especially since clinical consequences of increased LET at the end of range have not been proven yet.« less
  • Purpose: To study the feasibility of treating multiple brain tumors withlarge number of noncoplanar IMRT beams. Methods: Thirty beams are selected from 390 deliverable beams separated by six degree in 4pi space. Beam selection optimization is based on a column generation algorithm. MLC leaf size is 2 mm. Dose matrices are calculated with collapsed cone convolution and superposition method in a 2 mm by 2mm by 2 mm grid. Twelve brain tumors of various shapes, sizes and locations are used to generate four plans treating 3, 6, 9 and 12 tumors. The radiation dose was 20 Gy prescribed to themore » 100% isodose line. Dose Volume Histograms for tumor and brain were compared. Results: All results are based on a 2 mm by 2 mm by 2 mm CT grid. For 3, 6, 9 and 12 tumor plans, minimum tumor doses are all 20 Gy. Mean tumor dose are 20.0, 20.1, 20.1 and 20.1 Gy. Maximum tumor dose are 23.3, 23.6, 25.4 and 25.4 Gy. Mean ventricles dose are 0.7, 1.7, 2.4 and 3.1 Gy.Mean subventricular zone dose are 0.8, 1.3, 2.2 and 3.2 Gy. Average Equivalent uniform dose (gEUD) values for tumor are 20.1, 20.1, 20.2 and 20.2 Gy. The conformity index (CI) values are close to 1 for all 4 plans. The gradient index (GI) values are 2.50, 2.05, 2.09 and 2.19. Conclusion: Compared with published Gamma Knife treatment studies, noncoplanar IMRT treatment plan is superior in terms of dose conformity. Due to maximum limit of beams per plan, Gamma knife has to treat multiple tumors separately in different plans. Noncoplanar IMRT plans theoretically can be delivered in a single plan on any modern linac with an automated couch and image guidance. This warrants further study of using noncoplanar IMRT as a viable treatment solution for multiple brain tumors.« less