skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-530: Characterization of a 60-Leaf Motorized MLC Designed for Cobalt-60 Units

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4956715· OSTI ID:22649114
; ;  [1]
  1. Best Theratronics, Ottawa, ON (Canada)

Purpose: In a continuing effort to improve conformal radiation therapy with Cobalt-60 units, a 60-leaf MLC was designed, manufactured, and released to market. This work describes the physics measurements taken to characterize the clinical performance of this MLC. Methods: A 60 leaf MLC was custom designed with tungsten leaves of 4.5 cm height, single focused, achieving field size of 30×30 cm^2 when mounted on a 100cm SAD Cobalt-60 unit. Leakage and output factor measurements were performed using a single ion chamber in a solid water phantom. Penumbra and surface dose were measured using scanning chambers and diodes in a water phantom. Radiation-light coincidence measurements were performed using radiographic films. Results: With MLC mounted, measured penumbras at all depths are smaller than with jaws only. Surface doses were not significantly affected by the presence of MLC, and remained below values recommended by regulatory bodies. Light-radiation coincidences were found to be better than 3 mm for all field sizes. Leakage through the MLC was found to be strongly dependent on field size, increasing from 1.0 % for a 10×10 cm field to 2.0% for a 30×30 cm field. Such results meet the requirements of IEC 60601-2-11. The MLC was found to have significant influence on the output factor, when field size defined by MLC is significantly smaller than field size defined by jaws. Such effect is also observed on linear accelerators, but it is more pronounced on Cobalt-60 units. A 10×10 “diamond” MLC shape inside a 14×14 cm jaw showed output factor that is 5.7% higher than 10×10 cm field defined by matching MLC and jaws. Conclusion: The MLC offers clinically acceptable performance in penumbra, surface dose, and light-radiation coincidence. Several units of this MLC have recently been installed and used clinically. Validation of Cobalt-60 based IMRT with this MLC is ongoing. The authors are employees of Best Theratrnics Ltd.

OSTI ID:
22649114
Journal Information:
Medical Physics, Vol. 43, Issue 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English