skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-236: Comparison of Two IMRT/VMAT QA Systems Using Gamma Index Analysis

Abstract

Purpose: The goal of this study is to assess differences in the Gamma index pass rates when using two commercial QA systems and provide optimum Gamma index parameters for pre-treatment patient specific QA. Methods: Twenty-two VMAT cases that consisted of prostate, lung, head and neck, spine, brain and pancreas, were included in this study. The verification plans have been calculated using AcurosXB(V11) algorithm for different dose grids (1.5mm, 2.5mm, 3mm). The measurements were performed on TrueBeam(Varian) accelerator using both EPID(S1000) portal imager and ArcCheck(SunNuclearCorp) devices. Gamma index criteria variation of 3%/3mm, 2%/3mm, 2%/2mm and threshold (TH) doses of 5% to 50% were used in analysis. Results: The differences in Gamma pass rates between two devices are not statistically significant for 3%/3mm, yielding pass rate higher than 95%. Increase of lower dose TH showed reduced pass rates for both devices. ArcCheck’s more pronounced effect can be attributed to higher contribution of lower dose region spread. As expected, tightening criteria to 2%/2mm (TH: 10%) decreased Gamma pass rates below 95%. Higher EPID (92%) pass rates compared to ArcCheck (86%) probably due to better spatial resolution. Portal Dosimetry results showed lower Gamma pass rates for composite plans compared to individual field pass rates.more » This may be due to the expansion in the analyzed region which includes pixels not included in the separate field analysis. Decreasing dose grid size from 2.5mm to 1.5mm did not show statistically significant (p<0.05) differences in Gamma pass rates for both QA devices. Conclusion: Overall, both system measurements agree well with calculated dose when using gamma index criteria of 3%/3mm for a variety of VMAT cases. Variability between two systems increases using different dose GRID, TH and tighter gamma criteria and must be carefully assessed prior to clinical use.« less

Authors:
 [1];  [2]
  1. University of Miami, Miami, FL (United States)
  2. Sylvester Comprehensive Cancer Center Deerfield, Weston, FL (United States)
Publication Date:
OSTI Identifier:
22648852
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; EQUIPMENT; QUALITY ASSURANCE; RADIOTHERAPY; RATS; SPATIAL RESOLUTION; THRESHOLD DOSE

Citation Formats

Dogan, N, and Denissova, S. SU-F-T-236: Comparison of Two IMRT/VMAT QA Systems Using Gamma Index Analysis. United States: N. p., 2016. Web. doi:10.1118/1.4956375.
Dogan, N, & Denissova, S. SU-F-T-236: Comparison of Two IMRT/VMAT QA Systems Using Gamma Index Analysis. United States. doi:10.1118/1.4956375.
Dogan, N, and Denissova, S. 2016. "SU-F-T-236: Comparison of Two IMRT/VMAT QA Systems Using Gamma Index Analysis". United States. doi:10.1118/1.4956375.
@article{osti_22648852,
title = {SU-F-T-236: Comparison of Two IMRT/VMAT QA Systems Using Gamma Index Analysis},
author = {Dogan, N and Denissova, S},
abstractNote = {Purpose: The goal of this study is to assess differences in the Gamma index pass rates when using two commercial QA systems and provide optimum Gamma index parameters for pre-treatment patient specific QA. Methods: Twenty-two VMAT cases that consisted of prostate, lung, head and neck, spine, brain and pancreas, were included in this study. The verification plans have been calculated using AcurosXB(V11) algorithm for different dose grids (1.5mm, 2.5mm, 3mm). The measurements were performed on TrueBeam(Varian) accelerator using both EPID(S1000) portal imager and ArcCheck(SunNuclearCorp) devices. Gamma index criteria variation of 3%/3mm, 2%/3mm, 2%/2mm and threshold (TH) doses of 5% to 50% were used in analysis. Results: The differences in Gamma pass rates between two devices are not statistically significant for 3%/3mm, yielding pass rate higher than 95%. Increase of lower dose TH showed reduced pass rates for both devices. ArcCheck’s more pronounced effect can be attributed to higher contribution of lower dose region spread. As expected, tightening criteria to 2%/2mm (TH: 10%) decreased Gamma pass rates below 95%. Higher EPID (92%) pass rates compared to ArcCheck (86%) probably due to better spatial resolution. Portal Dosimetry results showed lower Gamma pass rates for composite plans compared to individual field pass rates. This may be due to the expansion in the analyzed region which includes pixels not included in the separate field analysis. Decreasing dose grid size from 2.5mm to 1.5mm did not show statistically significant (p<0.05) differences in Gamma pass rates for both QA devices. Conclusion: Overall, both system measurements agree well with calculated dose when using gamma index criteria of 3%/3mm for a variety of VMAT cases. Variability between two systems increases using different dose GRID, TH and tighter gamma criteria and must be carefully assessed prior to clinical use.},
doi = {10.1118/1.4956375},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To compare dose distributions in stereotactic radiation surgery of brain lesions using gamma Knife, VMAT, conformal arcs, and IMRT in order to provide an optimal treatment. Methods: Dose distributions from single shot of 4C model of Gamma Knife at the helmet collimation sizes of 4, 8, 14, and 18 mm in diameter were compared with full arcs with the square shapes of 4×4 (or 5×5), 8×8 (or 10×10), and spherical shapes of 16 or 20 mm in diameter using EDR3 films in the same gamma knife QA phantom. Plans for ten SRS cases with single and multiple lesions weremore » created in gamma knife plans and Pinnacle plans. The external beam plans had enlarged field size by 2-mm and used single conformal full circle arc for solitary lesion and none coplanar arcs/beams for multiple lesions. Coverage, conformity index, dose to critical organs, and integral dose to the brain and nearby critical structures were compared on all plans. Structures and dose matrices were registered in a Velocity deformable image registration system. Results: Single full circle arc from Elekta beam-modulate MLC (4-mm leaf thickness) and agility MLC (5-mm leaf thickness) have larger penumbra and less flatness than that of Gamma Knife single shot. None-coplanar arcs or beams were required to achieve similar dose distribution. In general, Gamma Knife plans provided significant less integral dose than that of linac-based plans. Benefits of IMRT and VMAT versus gamma Knife and conformal arcs were not significant. Conclusion: Our dose measurement and treatment planning evaluation clearly demonstrated dose distribution differences amount current popular SRS modalities for small solitary and multiple brain lesions. The trend of using MLC shape beams or arcs to replace conventional cones should be revisited in order to keep lower integral dose if the late correlates with some radiation-induced side effects. Pilot grant from Elekta LLC.« less
  • The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with twomore » arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time.« less
  • Purpose: This work investigates the impact of low and high dose rate on IMRT through Dynalogs by evaluating Gamma Index and Dose Volume Histogram. Methods: The Eclipse™ treatment planning software was used to generate plans on prostate and head and neck sites. A range of dose rates 300 MU/min and 600 MU/min were applied to each plan in order to investigate their effect on the beam ON time, efficiency and accuracy. Each plan had distinct monitor units per fraction, delivery time, mean dose rate and leaf speed. The DVH data was used in the assessment of the conformity and planmore » quality.The treatments were delivered on Varian™ Clinac 2100C accelerator equipped with 120 leaf millennium MLC. Dynalogs of each plan were analyzed by MATLAB™ program. Fluence measurements were performed using the Sun Nuclear™ 2D diode array and results were assessed, based on Gamma analysis of dose fluence maps, beam delivery statistics and Dynalogs data. Results: Minor differences found by adjusted R-squared analysis of DVH’s for all the plans with different dose rates. It has been also found that more and larger fields have greater time reduction at high dose rate and there was a sharp decrease in number of control points observed in dynalog files by switching dose rate from 300 MU/min to 600 MU/min. Gamma Analysis of all plans passes the confidence limit of ≥95% with greater number of passing points in 300 MU/min dose rate plans. Conclusion: The dynalog files are compatible tool for software based IMRT QA. It can work perfectly parallel to measurement based QA setup and stand-by procedure for pre and post delivery of treatment plan.« less
  • Purpose: Patient-specific QA procedures for IMRT and VMAT are traditionally performed by comparing TPS calculations with measured single point values and plane dose distributions by means of gamma analysis. New QA devices permit us to calculate 3D dose distributions on patient anatomy as redundant secondary check and reconstruct it from measurements taken with 2D and 3D detector arrays. 3D dose calculations allow us to perform DVH-based comparisons with clinical relevance, as well as 3D gamma analysis. One of these systems (Compass, IBA Dosimetry) combines traditional 2D with new anatomical-based 3D gamma analysis. This work shows the ability of this systemmore » by comparing 2D and 3D gamma analysis in pre-treatment QA for several VMAT prostate plans. Methods: Compass is capable of calculating dose as secondary check from DICOM TPS data and reconstructing it from measurements taken by a 2D ion chamber array (MatriXX Evolution, IBA Dosimetry). Both 2D and 3D gamma tests are available to compare calculated and reconstructed dose in Compass with TPS RT Dose. Results: 15 VMAT prostate plans have been measured with Compass. Dose is reconstructed with Compass for these plans. 2D gamma comparisons can be done for any plane from dose matrix. Mean gamma passing rates for isocenter planes (axial, coronal, sagittal) are (99.7±0.2)%, (99.9±0.1)%, (99.9±0.1)% for reconstructed dose planes. 3D mean gamma passing rates are (98.5±1.7)% for PTVs, (99.1±1.5)% for rectum, (100.0±0.0)% for bladder, (99.6±0.7)% for femoral heads and (98.1±4.1)% for penile bulb. Conclusion: Compass is a powerful tool to perform a complete pre-treatment QA analysis, from 2D techniques to 3D DVH-based techniques with clinical relevance. All reported values for VMAT prostate plans are in good agreement with TPS values. This system permits us to ensure the accuracy in the delivery of VMAT treatments completing a full patient-specific QA program.« less
  • Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered. The purpose of the study is to compare three different dosimeters for pre-treatment QA. Methods: Nineteen patients (affected by neurinomas, brain metastases, and by meningiomas) were treated with VMAT plans computed on a Monte Carlo based TPS. Gafchromic films inside a slab phantom (GF), 3-D cylindrical phantom with two orthogonal diodes array (DA), and 3-D cylindricalmore » phantom with a single rotating ionization chambers array (ICA), have been evaluated. The dosimeters are, respectively, characterized by a spatial resolution of: 0.4 (in our method), 5 and 2.5 mm. For GF we used a double channel method for calibration and reading protocol; for DA and ICA we used the 3-D dose distributions reconstructed by the two software sold with the dosimeters. With the need of a common system for analyze different measuring approaches, we used an in-house software that analyze a single coronal plane in the middle of the phantoms and Gamma values (2% / 2 mm and 3% / 3 mm) were computed for all patients and dosimeters. Results: The percentage of points with gamma values less than one was: 95.7% for GF, 96.8% for DA and 95% for ICA, using 3%/3mm criteria, and 90.1% for GF, 92.4% for DA and 92% for ICA, using 2% / 2mm gamma criteria. Tstudent test p-values obtained by comparing the three datasets were not statistically significant for both gamma criteria. Conclusion: Gamma index analysis is not affected by different spatial resolution of the three dosimeters.« less