skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model

Abstract

PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy of this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.

Authors:
; ;  [1];  [2]; ; ; ; ; ;  [1]
  1. Southeast University, Department of Radiology, Medical School, Zhongda Hospital (China)
  2. Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Department of Diagnostic and Interventional Radiology (China)
Publication Date:
OSTI Identifier:
22645336
Resource Type:
Journal Article
Resource Relation:
Journal Name: Cardiovascular and Interventional Radiology; Journal Volume: 40; Journal Issue: 2; Other Information: Copyright (c) 2017 Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE); http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; BONE FRACTURES; CEMENTS; COMPRESSION; FORECASTING; HAZARDS; HOSPITALS; PATIENTS; PROBABILITY; REGRESSION ANALYSIS; SKELETAL DISEASES; TRAINING; VALIDATION

Citation Formats

Zhong, Bin-Yan, He, Shi-Cheng, Zhu, Hai-Dong, Wu, Chun-Gen, Fang, Wen, Chen, Li, Guo, Jin-He, Deng, Gang, Zhu, Guang-Yu, and Teng, Gao-Jun, E-mail: gjteng@vip.sina.com. Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model. United States: N. p., 2017. Web. doi:10.1007/S00270-016-1492-1.
Zhong, Bin-Yan, He, Shi-Cheng, Zhu, Hai-Dong, Wu, Chun-Gen, Fang, Wen, Chen, Li, Guo, Jin-He, Deng, Gang, Zhu, Guang-Yu, & Teng, Gao-Jun, E-mail: gjteng@vip.sina.com. Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model. United States. doi:10.1007/S00270-016-1492-1.
Zhong, Bin-Yan, He, Shi-Cheng, Zhu, Hai-Dong, Wu, Chun-Gen, Fang, Wen, Chen, Li, Guo, Jin-He, Deng, Gang, Zhu, Guang-Yu, and Teng, Gao-Jun, E-mail: gjteng@vip.sina.com. Wed . "Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model". United States. doi:10.1007/S00270-016-1492-1.
@article{osti_22645336,
title = {Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model},
author = {Zhong, Bin-Yan and He, Shi-Cheng and Zhu, Hai-Dong and Wu, Chun-Gen and Fang, Wen and Chen, Li and Guo, Jin-He and Deng, Gang and Zhu, Guang-Yu and Teng, Gao-Jun, E-mail: gjteng@vip.sina.com},
abstractNote = {PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy of this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.},
doi = {10.1007/S00270-016-1492-1},
journal = {Cardiovascular and Interventional Radiology},
number = 2,
volume = 40,
place = {United States},
year = {Wed Feb 15 00:00:00 EST 2017},
month = {Wed Feb 15 00:00:00 EST 2017}
}
  • ObjectiveThe purpose of this study was to assess, by the mean apparent diffusion coefficient (ADC), if a relationship exists between disc ADC and MR findings of adjacent disc degeneration after thoracolumbar fractures treated by anatomic reduction using vertebral augmentation (VAP).Materials and MethodsTwenty non-consecutive patients (mean age 50.7 years; range 45–56) treated because of vertebral fractures, were included in this study. There were 10 A3.1 and 10 A1.2 fractures (AO classification). Surgical treatment using VAP was applied in 14 cases, and conservative in 6 patients. MRI T2-weighted images and mapping of apparent diffusion coefficient (ADC) of the intervertebral disc adjacent to themore » fractured segment were performed after a mean follow-up of 32 months. A total of 60 discs, 3 per patient, were analysed: infra-adjacent, supra-adjacent and a control disc one level above the supra-adjacent.ResultsNo differences between patients surgically treated and those following a conservative protocol regarding the average ADC values obtained in the 20 control discs analysed were found. Considering all discs, average ADC in the supra-adjacent level was lower than in the infra-adjacent (1.35 ± 0.12 vs. 1.53 ± 0.06; p < 0.001). Average ADC values of the discs used as a control were similar to those of the infra-adjacent level (1.54 ± 0.06). Compared to surgically treated patients, discs at the supra-adjacent fracture level showed statistically significant lower values in cases treated conservatively (p < 0.001). The variation in the delay of surgery had no influence on the average values of ADC at any of the measured levels.ConclusionsADC measurements of the supra-adjacent discs after a mean follow-up of 32 months following thoracolumbar fractures, showed that restoration of the vertebral collapse by minimally invasive VAP prevents posttraumatic disc degeneration.« less
  • Purpose: To determine our institutional vertebral compression fracture (VCF) rate after spine stereotactic radiosurgery (SRS) and determine contributory factors. Methods and Materials: Retrospective analysis from 2001 to 2013 at a single institution was performed. With institutional review board approval, electronic medical records of 1905 vertebral bodies from 791 patients who were treated with SRS for the management of primary or metastatic spinal lesions were reviewed. A total of 448 patients (1070 vertebral bodies) with adequate follow-up imaging studies available were analyzed. Doses ranging from 10 Gy in 1 fraction to 60 Gy in 5 fractions were delivered. Computed tomography and magnetic resonancemore » imaging were used to evaluate the primary endpoints of this study: development of a new VCF, progression of an existing VCF, and requirement of stabilization surgery after SRS. Results: A total of 127 VCFs (11.9%; 95% confidence interval [CI] 9.5%-14.2%) in 97 patients were potentially SRS induced: 46 (36%) were de novo, 44 (35%) VCFs progressed, and 37 (29%) required stabilization surgery after SRS. Our rate for radiologic VCF development/progression (excluding patients who underwent surgery) was 8.4%. Upon further exclusion of patients with hematologic malignancies the VCF rate was 7.6%. In the univariate analyses, females (hazard ratio [HR] 1.54, 95% CI 1.01-2.33, P=.04), prior VCF (HR 1.99, 95% CI 1.30-3.06, P=.001), primary hematologic malignancies (HR 2.68, 95% CI 1.68-4.28, P<.001), thoracic spine lesions (HR 1.46, 95% CI 1.02-2.10, P=.02), and lytic lesions had a significantly increased risk for VCF after SRS. On multivariate analyses, prior VCF and lesion type remained contributory. Conclusions: Single-fraction SRS doses of 16 to 18 Gy to the spine seem to be associated with a low rate of VCFs. To the best of our knowledge, this is the largest reported experience analyzing SRS-induced VCFs, with one of the lowest event rates reported.« less
  • The aim of this study was to evaluate the incidence of secondary symptomatic vertebral compression fractures (VCFs) in patients previously treated by percutaneous vertebroplasty (VTP). Three hundred sixteen patients with 486 treated VCFs were included in the study according to the inclusion criteria. Patients were kept in regular follow-up using a standardized questionairre before, 1 day, 7 days, 6 months, and 1 year after, and, further on, on a yearly basis after VTP. The incidence of secondary symptomatic VCF was calculated, and anatomical distribution with respect to previous fractures characterized. Mean follow-up was 8 months (6-56 months) after VTP. Fifty-twomore » of 316 (16.4 %) patients (45 female, 7 male) returned for treatment of 69 secondary VCFs adjacent to (35/69; 51%) or distant from (34/69; 49%) previously treated levels. Adjacent secondary VCF occurred significantly more often compared to distant secondary VCF. Of the total 69 secondary VCFs, 35 of 69 occurred below and 27 of 69 above pretreated VCFs. Of the 65 sandwich levels generated, in 7 of 65 (11%) secondary VCFs were observed. Secondary VCF below pretreated VCF occurred significantly earlier in time compared to VCF above and compared to sandwich body fractures. No major complication occurred during initial or follow-up intervention. We conclude that secondary VCFs do occur in individuals after VTP but the rate found in our study remains below the level expected from epidemiologic studies. Adjacent fractures occur more often and follow the cluster distribution of VCF as expected from the natural history of the underlying osteoporosis. No increased rate of secondary VCF after VTP was observed in this retrospective analysis. In accordance with the pertinent literature, short-term and also midterm clinical results are encouraging and provide further support for the usefulness and the low complication rate of this procedure as an adjunct to the spectrum of pain management in patients with severe midline back pain due to osteoporotic spine fractures.« less
  • The aim of this study was to assess the feasibility of and venous leakage reduction in percutaneous vertebroplasty (PV) using a new high-viscosity bone cement (PMMA). PV has been used effectively for pain relief in osteoporotic and malignant vertebral fractures. Cement extrusion is a common problem and can lead to complications. Sixty patients (52 female; mean age, 72.2 {+-} 7.2) suffering from osteoporosis (46), malignancy (12), and angiomas (2), divided into two groups (A and B), underwent PV on 190 vertebrae (86 dorsal, 104 lumbar). In Group A, PV with high-viscosity PMMA (Confidence, Disc-O-Tech, Israel) was used. This PMMA wasmore » injected by a proprietary delivery system, a hydraulic saline-filled screw injector. In Group B, a standard low-viscosity PMMA was used. Postprocedural CT was carried out to detect PMMA leakages and complications. Fisher's exact test and Wilcoxon rank test were used to assess significant differences (p < 0.05) in leakages and to evaluate the clinical outcome. PV was feasible, achieving good clinical outcome (p < 0.0001) without major complications. In Group A, postprocedural CT showed an asymptomatic leak in the venous structures of 8 of 98 (8.2%) treated vertebrae; a discoidal leak occurred in 6 of 98 (6.1%). In Group B, a venous leak was seen in 38 of 92 (41.3%) and a discoidal leak in 12 of 92 (13.0%). Reduction of venous leak obtained by high-viscosity PMMA was highly significant (p < 0.0001), whereas this result was not significant (p = 0.14) related to the disc. The high-viscosity PMMA system is safe and effective for clinical use, allowing a significant reduction of extravasation rate and, thus, leakage-related complications.« less
  • The purpose of this study was to investigate geometrical stability and preservation of height gain of vertebral bodies after percutaneous vertebroplasty during 2 years' follow-up and to elucidate the geometric remodeling process of the vertebral bidisk unit (VDU) of the affected segment. Patients with osteoporotic vertebral compression fractures with pain resistant to analgetic drugs were treated with polymethylmethacrylate vertebroplasty. Mean {+-} standard error cement volume was 5.1 {+-} 2.0 ml. Vertebral geometry was documented by sagittal and coronal reformations from multidetector computed tomography data sets: anterior, posterior, and lateral vertebral heights, end plate angles, and compression index (CI = anterior/posteriormore » height). Additionally, the VDU (vertebral bodies plus both adjacent disk spaces) was calculated from the multidetector computed tomography data sets: anterior, posterior, and both lateral aspects. Patients were assigned to two groups: moderate compression with CI of >0.75 (group 1) and severe compression with CI of <0.75 (group 2). A total of 83 vertebral bodies of 30 patients (7 men, 23 women, age 70.7 {+-} 9.7 years, range 40-82 years) were treated with vertebroplasty and prospectively followed for 24 months. In the moderate compression group (group 1), the vertebral heights were stabilized over time at the preinterventional levels. Compared with group 1, group 2 showed a greater anterior height gain (+2.8 {+-} 2.2 mm vs. +0.8 {+-} 2.0 mm, P < 0.001), better reduction of end plate angle (-4.9 {+-} 4.8{sup o} vs. -1.0 {+-} 2.7{sup o}, P < 0.01), and improved CI (+0.12 {+-} 0.13 vs. +0.02 {+-} 0.07, P < 0.01) and demonstrated preserved anterior height gain at 2 years (+1.2 {+-} 3.2 mm, P < 0.01) as well as improved end plate angles (-5.2 {+-} 5.0{sup o}, P < 0.01) and compression indices (+0.11 {+-} 0.15, P < 0.01). Thus, posterior height loss of vertebrae and adjacent intervertebral disk spaces contributed to a remodeling of the VDU, resulting in some compensation of the kyphotic malposition of the affected vertebral segment. Vertebroplasty improved vertebral geometry during midterm follow-up. In severe vertebral compression, significant height gain and improvement of end plate angles were achieved. The remodeling of the VDUs contributes to reduction of kyphosis and an overall improvement of the statics of the spine.« less